Metamath Proof Explorer
		
		
		
		Description:  A subclass transitivity deduction.  (Contributed by NM, 27-Sep-2004)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sylan9ssr.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
					
						|  |  | sylan9ssr.2 | ⊢ ( 𝜓  →  𝐵  ⊆  𝐶 ) | 
				
					|  | Assertion | sylan9ssr | ⊢  ( ( 𝜓  ∧  𝜑 )  →  𝐴  ⊆  𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylan9ssr.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | sylan9ssr.2 | ⊢ ( 𝜓  →  𝐵  ⊆  𝐶 ) | 
						
							| 3 | 1 2 | sylan9ss | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐴  ⊆  𝐶 ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝜓  ∧  𝜑 )  →  𝐴  ⊆  𝐶 ) |