Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | unss12 | |- ( ( A C_ B /\ C C_ D ) -> ( A u. C ) C_ ( B u. D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss1 | |- ( A C_ B -> ( A u. C ) C_ ( B u. C ) ) |
|
2 | unss2 | |- ( C C_ D -> ( B u. C ) C_ ( B u. D ) ) |
|
3 | 1 2 | sylan9ss | |- ( ( A C_ B /\ C C_ D ) -> ( A u. C ) C_ ( B u. D ) ) |