Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ssequn2 | |- ( A C_ B <-> ( B u. A ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 | |- ( A C_ B <-> ( A u. B ) = B ) |
|
2 | uncom | |- ( A u. B ) = ( B u. A ) |
|
3 | 2 | eqeq1i | |- ( ( A u. B ) = B <-> ( B u. A ) = B ) |
4 | 1 3 | bitri | |- ( A C_ B <-> ( B u. A ) = B ) |