Metamath Proof Explorer


Theorem dfid4

Description: The identity function expressed using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion dfid4 I = ( 𝑥 ∈ V ↦ 𝑥 )

Proof

Step Hyp Ref Expression
1 equcom ( 𝑥 = 𝑦𝑦 = 𝑥 )
2 vex 𝑥 ∈ V
3 2 biantrur ( 𝑦 = 𝑥 ↔ ( 𝑥 ∈ V ∧ 𝑦 = 𝑥 ) )
4 1 3 bitri ( 𝑥 = 𝑦 ↔ ( 𝑥 ∈ V ∧ 𝑦 = 𝑥 ) )
5 4 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 = 𝑥 ) }
6 df-id I = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 }
7 df-mpt ( 𝑥 ∈ V ↦ 𝑥 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 = 𝑥 ) }
8 5 6 7 3eqtr4i I = ( 𝑥 ∈ V ↦ 𝑥 )