Metamath Proof Explorer


Theorem dfid4

Description: The identity function expressed using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion dfid4 I = x V x

Proof

Step Hyp Ref Expression
1 equcom x = y y = x
2 vex x V
3 2 biantrur y = x x V y = x
4 1 3 bitri x = y x V y = x
5 4 opabbii x y | x = y = x y | x V y = x
6 df-id I = x y | x = y
7 df-mpt x V x = x y | x V y = x
8 5 6 7 3eqtr4i I = x V x