Description: The identity function expressed using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | dfid4 | |- _I = ( x e. _V |-> x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcom | |- ( x = y <-> y = x ) |
|
2 | vex | |- x e. _V |
|
3 | 2 | biantrur | |- ( y = x <-> ( x e. _V /\ y = x ) ) |
4 | 1 3 | bitri | |- ( x = y <-> ( x e. _V /\ y = x ) ) |
5 | 4 | opabbii | |- { <. x , y >. | x = y } = { <. x , y >. | ( x e. _V /\ y = x ) } |
6 | df-id | |- _I = { <. x , y >. | x = y } |
|
7 | df-mpt | |- ( x e. _V |-> x ) = { <. x , y >. | ( x e. _V /\ y = x ) } |
|
8 | 5 6 7 | 3eqtr4i | |- _I = ( x e. _V |-> x ) |