Metamath Proof Explorer


Theorem dfid4

Description: The identity function expressed using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion dfid4
|- _I = ( x e. _V |-> x )

Proof

Step Hyp Ref Expression
1 equcom
 |-  ( x = y <-> y = x )
2 vex
 |-  x e. _V
3 2 biantrur
 |-  ( y = x <-> ( x e. _V /\ y = x ) )
4 1 3 bitri
 |-  ( x = y <-> ( x e. _V /\ y = x ) )
5 4 opabbii
 |-  { <. x , y >. | x = y } = { <. x , y >. | ( x e. _V /\ y = x ) }
6 df-id
 |-  _I = { <. x , y >. | x = y }
7 df-mpt
 |-  ( x e. _V |-> x ) = { <. x , y >. | ( x e. _V /\ y = x ) }
8 5 6 7 3eqtr4i
 |-  _I = ( x e. _V |-> x )