Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | intmin2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | intmin2 | ⊢ ∩ { 𝑥 ∣ 𝐴 ⊆ 𝑥 } = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intmin2.1 | ⊢ 𝐴 ∈ V | |
| 2 | rabab | ⊢ { 𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥 } = { 𝑥 ∣ 𝐴 ⊆ 𝑥 } | |
| 3 | 2 | inteqi | ⊢ ∩ { 𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥 } = ∩ { 𝑥 ∣ 𝐴 ⊆ 𝑥 } |
| 4 | intmin | ⊢ ( 𝐴 ∈ V → ∩ { 𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥 } = 𝐴 ) | |
| 5 | 1 4 | ax-mp | ⊢ ∩ { 𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥 } = 𝐴 |
| 6 | 3 5 | eqtr3i | ⊢ ∩ { 𝑥 ∣ 𝐴 ⊆ 𝑥 } = 𝐴 |