Metamath Proof Explorer


Theorem dfid7

Description: Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020)

Ref Expression
Assertion dfid7
|- _I = ( x e. _V |-> |^| { y | ( x C_ y /\ T. ) } )

Proof

Step Hyp Ref Expression
1 dfid4
 |-  _I = ( x e. _V |-> x )
2 ancom
 |-  ( ( x C_ y /\ T. ) <-> ( T. /\ x C_ y ) )
3 truan
 |-  ( ( T. /\ x C_ y ) <-> x C_ y )
4 2 3 bitri
 |-  ( ( x C_ y /\ T. ) <-> x C_ y )
5 4 abbii
 |-  { y | ( x C_ y /\ T. ) } = { y | x C_ y }
6 5 inteqi
 |-  |^| { y | ( x C_ y /\ T. ) } = |^| { y | x C_ y }
7 vex
 |-  x e. _V
8 7 intmin2
 |-  |^| { y | x C_ y } = x
9 6 8 eqtri
 |-  |^| { y | ( x C_ y /\ T. ) } = x
10 9 mpteq2i
 |-  ( x e. _V |-> |^| { y | ( x C_ y /\ T. ) } ) = ( x e. _V |-> x )
11 1 10 eqtr4i
 |-  _I = ( x e. _V |-> |^| { y | ( x C_ y /\ T. ) } )