Step |
Hyp |
Ref |
Expression |
1 |
|
clss2lem.1 |
|- ( ph -> ( ch -> ps ) ) |
2 |
1
|
adantld |
|- ( ph -> ( ( X C_ x /\ ch ) -> ps ) ) |
3 |
2
|
alrimiv |
|- ( ph -> A. x ( ( X C_ x /\ ch ) -> ps ) ) |
4 |
|
pm5.3 |
|- ( ( ( X C_ x /\ ch ) -> ps ) <-> ( ( X C_ x /\ ch ) -> ( X C_ x /\ ps ) ) ) |
5 |
4
|
albii |
|- ( A. x ( ( X C_ x /\ ch ) -> ps ) <-> A. x ( ( X C_ x /\ ch ) -> ( X C_ x /\ ps ) ) ) |
6 |
|
ss2ab |
|- ( { x | ( X C_ x /\ ch ) } C_ { x | ( X C_ x /\ ps ) } <-> A. x ( ( X C_ x /\ ch ) -> ( X C_ x /\ ps ) ) ) |
7 |
5 6
|
bitr4i |
|- ( A. x ( ( X C_ x /\ ch ) -> ps ) <-> { x | ( X C_ x /\ ch ) } C_ { x | ( X C_ x /\ ps ) } ) |
8 |
3 7
|
sylib |
|- ( ph -> { x | ( X C_ x /\ ch ) } C_ { x | ( X C_ x /\ ps ) } ) |
9 |
|
intss |
|- ( { x | ( X C_ x /\ ch ) } C_ { x | ( X C_ x /\ ps ) } -> |^| { x | ( X C_ x /\ ps ) } C_ |^| { x | ( X C_ x /\ ch ) } ) |
10 |
8 9
|
syl |
|- ( ph -> |^| { x | ( X C_ x /\ ps ) } C_ |^| { x | ( X C_ x /\ ch ) } ) |