Metamath Proof Explorer


Theorem clss2lem

Description: The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020)

Ref Expression
Hypothesis clss2lem.1
|- ( ph -> ( ch -> ps ) )
Assertion clss2lem
|- ( ph -> |^| { x | ( X C_ x /\ ps ) } C_ |^| { x | ( X C_ x /\ ch ) } )

Proof

Step Hyp Ref Expression
1 clss2lem.1
 |-  ( ph -> ( ch -> ps ) )
2 1 adantld
 |-  ( ph -> ( ( X C_ x /\ ch ) -> ps ) )
3 2 alrimiv
 |-  ( ph -> A. x ( ( X C_ x /\ ch ) -> ps ) )
4 pm5.3
 |-  ( ( ( X C_ x /\ ch ) -> ps ) <-> ( ( X C_ x /\ ch ) -> ( X C_ x /\ ps ) ) )
5 4 albii
 |-  ( A. x ( ( X C_ x /\ ch ) -> ps ) <-> A. x ( ( X C_ x /\ ch ) -> ( X C_ x /\ ps ) ) )
6 ss2ab
 |-  ( { x | ( X C_ x /\ ch ) } C_ { x | ( X C_ x /\ ps ) } <-> A. x ( ( X C_ x /\ ch ) -> ( X C_ x /\ ps ) ) )
7 5 6 bitr4i
 |-  ( A. x ( ( X C_ x /\ ch ) -> ps ) <-> { x | ( X C_ x /\ ch ) } C_ { x | ( X C_ x /\ ps ) } )
8 3 7 sylib
 |-  ( ph -> { x | ( X C_ x /\ ch ) } C_ { x | ( X C_ x /\ ps ) } )
9 intss
 |-  ( { x | ( X C_ x /\ ch ) } C_ { x | ( X C_ x /\ ps ) } -> |^| { x | ( X C_ x /\ ps ) } C_ |^| { x | ( X C_ x /\ ch ) } )
10 8 9 syl
 |-  ( ph -> |^| { x | ( X C_ x /\ ps ) } C_ |^| { x | ( X C_ x /\ ch ) } )