Step |
Hyp |
Ref |
Expression |
1 |
|
clss2lem.1 |
⊢ ( 𝜑 → ( 𝜒 → 𝜓 ) ) |
2 |
1
|
adantld |
⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) → 𝜓 ) ) |
3 |
2
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) → 𝜓 ) ) |
4 |
|
pm5.3 |
⊢ ( ( ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) → 𝜓 ) ↔ ( ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) → ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
5 |
4
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) → 𝜓 ) ↔ ∀ 𝑥 ( ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) → ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
6 |
|
ss2ab |
⊢ ( { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) } ⊆ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ↔ ∀ 𝑥 ( ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) → ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
7 |
5 6
|
bitr4i |
⊢ ( ∀ 𝑥 ( ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) → 𝜓 ) ↔ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) } ⊆ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ) |
8 |
3 7
|
sylib |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) } ⊆ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ) |
9 |
|
intss |
⊢ ( { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) } ⊆ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } → ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ⊆ ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) } ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ⊆ ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜒 ) } ) |