Metamath Proof Explorer


Theorem clss2lem

Description: The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020)

Ref Expression
Hypothesis clss2lem.1 ( 𝜑 → ( 𝜒𝜓 ) )
Assertion clss2lem ( 𝜑 { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } ⊆ { 𝑥 ∣ ( 𝑋𝑥𝜒 ) } )

Proof

Step Hyp Ref Expression
1 clss2lem.1 ( 𝜑 → ( 𝜒𝜓 ) )
2 1 adantld ( 𝜑 → ( ( 𝑋𝑥𝜒 ) → 𝜓 ) )
3 2 alrimiv ( 𝜑 → ∀ 𝑥 ( ( 𝑋𝑥𝜒 ) → 𝜓 ) )
4 pm5.3 ( ( ( 𝑋𝑥𝜒 ) → 𝜓 ) ↔ ( ( 𝑋𝑥𝜒 ) → ( 𝑋𝑥𝜓 ) ) )
5 4 albii ( ∀ 𝑥 ( ( 𝑋𝑥𝜒 ) → 𝜓 ) ↔ ∀ 𝑥 ( ( 𝑋𝑥𝜒 ) → ( 𝑋𝑥𝜓 ) ) )
6 ss2ab ( { 𝑥 ∣ ( 𝑋𝑥𝜒 ) } ⊆ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } ↔ ∀ 𝑥 ( ( 𝑋𝑥𝜒 ) → ( 𝑋𝑥𝜓 ) ) )
7 5 6 bitr4i ( ∀ 𝑥 ( ( 𝑋𝑥𝜒 ) → 𝜓 ) ↔ { 𝑥 ∣ ( 𝑋𝑥𝜒 ) } ⊆ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } )
8 3 7 sylib ( 𝜑 → { 𝑥 ∣ ( 𝑋𝑥𝜒 ) } ⊆ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } )
9 intss ( { 𝑥 ∣ ( 𝑋𝑥𝜒 ) } ⊆ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } → { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } ⊆ { 𝑥 ∣ ( 𝑋𝑥𝜒 ) } )
10 8 9 syl ( 𝜑 { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } ⊆ { 𝑥 ∣ ( 𝑋𝑥𝜒 ) } )