Metamath Proof Explorer


Theorem ss2ab

Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994)

Ref Expression
Assertion ss2ab x|φx|ψxφψ

Proof

Step Hyp Ref Expression
1 nfab1 _xx|φ
2 nfab1 _xx|ψ
3 1 2 dfss2f x|φx|ψxxx|φxx|ψ
4 abid xx|φφ
5 abid xx|ψψ
6 4 5 imbi12i xx|φxx|ψφψ
7 6 albii xxx|φxx|ψxφψ
8 3 7 bitri x|φx|ψxφψ