Metamath Proof Explorer


Theorem abss

Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion abss x|φAxφxA

Proof

Step Hyp Ref Expression
1 abid2 x|xA=A
2 1 sseq2i x|φx|xAx|φA
3 ss2ab x|φx|xAxφxA
4 2 3 bitr3i x|φAxφxA