Metamath Proof Explorer


Theorem ssab

Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion ssab Ax|φxxAφ

Proof

Step Hyp Ref Expression
1 abid2 x|xA=A
2 1 sseq1i x|xAx|φAx|φ
3 ss2ab x|xAx|φxxAφ
4 2 3 bitr3i Ax|φxxAφ