Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | abss | |- ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2 | |- { x | x e. A } = A |
|
2 | 1 | sseq2i | |- ( { x | ph } C_ { x | x e. A } <-> { x | ph } C_ A ) |
3 | ss2ab | |- ( { x | ph } C_ { x | x e. A } <-> A. x ( ph -> x e. A ) ) |
|
4 | 2 3 | bitr3i | |- ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) ) |