Metamath Proof Explorer


Theorem abss

Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion abss
|- ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) )

Proof

Step Hyp Ref Expression
1 abid2
 |-  { x | x e. A } = A
2 1 sseq2i
 |-  ( { x | ph } C_ { x | x e. A } <-> { x | ph } C_ A )
3 ss2ab
 |-  ( { x | ph } C_ { x | x e. A } <-> A. x ( ph -> x e. A ) )
4 2 3 bitr3i
 |-  ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) )