Metamath Proof Explorer


Theorem cbvcllem

Description: Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020)

Ref Expression
Hypothesis cbvcllem.y x = y φ ψ
Assertion cbvcllem x | X x φ = y | X y ψ

Proof

Step Hyp Ref Expression
1 cbvcllem.y x = y φ ψ
2 1 cleq2lem x = y X x φ X y ψ
3 2 cbvabv x | X x φ = y | X y ψ