Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998) (Proof shortened by Kyle Wyonch, 27-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvss | |- ( A C_ B -> `' A C_ `' B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr | |- ( A C_ B -> ( y A x -> y B x ) ) |
|
2 | 1 | ssopab2dv | |- ( A C_ B -> { <. x , y >. | y A x } C_ { <. x , y >. | y B x } ) |
3 | df-cnv | |- `' A = { <. x , y >. | y A x } |
|
4 | df-cnv | |- `' B = { <. x , y >. | y B x } |
|
5 | 2 3 4 | 3sstr4g | |- ( A C_ B -> `' A C_ `' B ) |