| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clcnvlem.sub1 |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ( 𝜒 → 𝜓 ) ) |
| 2 |
|
clcnvlem.sub2 |
⊢ ( ( 𝜑 ∧ 𝑦 = ◡ 𝑥 ) → ( 𝜓 → 𝜒 ) ) |
| 3 |
|
clcnvlem.sub3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
| 4 |
|
clcnvlem.ssub |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
| 5 |
|
clcnvlem.ubex |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 6 |
|
clcnvlem.clex |
⊢ ( 𝜑 → 𝜃 ) |
| 7 |
4 6
|
jca |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝐴 ∧ 𝜃 ) ) |
| 8 |
3
|
cleq2lem |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ↔ ( 𝑋 ⊆ 𝐴 ∧ 𝜃 ) ) ) |
| 9 |
5 7 8
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) |
| 10 |
9
|
cnvintabd |
⊢ ( 𝜑 → ◡ ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } = ∩ { 𝑧 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } ) |
| 11 |
|
df-rab |
⊢ { 𝑧 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } = { 𝑧 ∣ ( 𝑧 ∈ 𝒫 ( V × V ) ∧ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) } |
| 12 |
|
exsimpl |
⊢ ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → ∃ 𝑥 𝑧 = ◡ 𝑥 ) |
| 13 |
|
relcnv |
⊢ Rel ◡ 𝑥 |
| 14 |
|
releq |
⊢ ( 𝑧 = ◡ 𝑥 → ( Rel 𝑧 ↔ Rel ◡ 𝑥 ) ) |
| 15 |
13 14
|
mpbiri |
⊢ ( 𝑧 = ◡ 𝑥 → Rel 𝑧 ) |
| 16 |
15
|
exlimiv |
⊢ ( ∃ 𝑥 𝑧 = ◡ 𝑥 → Rel 𝑧 ) |
| 17 |
12 16
|
syl |
⊢ ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → Rel 𝑧 ) |
| 18 |
|
df-rel |
⊢ ( Rel 𝑧 ↔ 𝑧 ⊆ ( V × V ) ) |
| 19 |
17 18
|
sylib |
⊢ ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → 𝑧 ⊆ ( V × V ) ) |
| 20 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 ( V × V ) ↔ 𝑧 ⊆ ( V × V ) ) |
| 21 |
20
|
bicomi |
⊢ ( 𝑧 ⊆ ( V × V ) ↔ 𝑧 ∈ 𝒫 ( V × V ) ) |
| 22 |
19 21
|
sylib |
⊢ ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → 𝑧 ∈ 𝒫 ( V × V ) ) |
| 23 |
22
|
pm4.71ri |
⊢ ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝒫 ( V × V ) ∧ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
| 24 |
23
|
bicomi |
⊢ ( ( 𝑧 ∈ 𝒫 ( V × V ) ∧ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ↔ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
| 25 |
24
|
abbii |
⊢ { 𝑧 ∣ ( 𝑧 ∈ 𝒫 ( V × V ) ∧ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) } = { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } |
| 26 |
11 25
|
eqtri |
⊢ { 𝑧 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } = { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } |
| 27 |
26
|
inteqi |
⊢ ∩ { 𝑧 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } = ∩ { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → ∩ { 𝑧 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } = ∩ { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } ) |
| 29 |
|
vex |
⊢ 𝑦 ∈ V |
| 30 |
29
|
cnvex |
⊢ ◡ 𝑦 ∈ V |
| 31 |
30
|
cnvex |
⊢ ◡ ◡ 𝑦 ∈ V |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → ◡ ◡ 𝑦 ∈ V ) |
| 33 |
5 4
|
ssexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 34 |
33
|
difexd |
⊢ ( 𝜑 → ( 𝑋 ∖ ◡ ◡ 𝑋 ) ∈ V ) |
| 35 |
|
unexg |
⊢ ( ( ◡ 𝑦 ∈ V ∧ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ∈ V ) → ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∈ V ) |
| 36 |
30 34 35
|
sylancr |
⊢ ( 𝜑 → ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∈ V ) |
| 37 |
|
inundif |
⊢ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 |
| 38 |
|
cnvun |
⊢ ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ( ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
| 39 |
38
|
sseq1i |
⊢ ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 ↔ ( ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 ) |
| 40 |
39
|
biimpi |
⊢ ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 → ( ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 ) |
| 41 |
40
|
unssad |
⊢ ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 → ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ 𝑦 ) |
| 42 |
|
relcnv |
⊢ Rel ◡ ◡ 𝑋 |
| 43 |
|
relin2 |
⊢ ( Rel ◡ ◡ 𝑋 → Rel ( 𝑋 ∩ ◡ ◡ 𝑋 ) ) |
| 44 |
42 43
|
ax-mp |
⊢ Rel ( 𝑋 ∩ ◡ ◡ 𝑋 ) |
| 45 |
|
dfrel2 |
⊢ ( Rel ( 𝑋 ∩ ◡ ◡ 𝑋 ) ↔ ◡ ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) = ( 𝑋 ∩ ◡ ◡ 𝑋 ) ) |
| 46 |
44 45
|
mpbi |
⊢ ◡ ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) = ( 𝑋 ∩ ◡ ◡ 𝑋 ) |
| 47 |
|
cnvss |
⊢ ( ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ 𝑦 → ◡ ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ ◡ 𝑦 ) |
| 48 |
46 47
|
eqsstrrid |
⊢ ( ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ 𝑦 → ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ ◡ 𝑦 ) |
| 49 |
41 48
|
syl |
⊢ ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 → ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ ◡ 𝑦 ) |
| 50 |
|
ssid |
⊢ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ( 𝑋 ∖ ◡ ◡ 𝑋 ) |
| 51 |
|
unss12 |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ ◡ 𝑦 ∧ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
| 52 |
49 50 51
|
sylancl |
⊢ ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 → ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
| 53 |
52
|
a1i |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 → ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 → ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
| 54 |
|
cnveq |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 → ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ◡ 𝑋 ) |
| 55 |
54
|
sseq1d |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 → ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 ↔ ◡ 𝑋 ⊆ 𝑦 ) ) |
| 56 |
|
sseq1 |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 → ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ↔ 𝑋 ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
| 57 |
53 55 56
|
3imtr3d |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 → ( ◡ 𝑋 ⊆ 𝑦 → 𝑋 ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
| 58 |
37 57
|
ax-mp |
⊢ ( ◡ 𝑋 ⊆ 𝑦 → 𝑋 ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
| 59 |
|
sseq2 |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( 𝑋 ⊆ 𝑥 ↔ 𝑋 ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
| 60 |
58 59
|
imbitrrid |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( ◡ 𝑋 ⊆ 𝑦 → 𝑋 ⊆ 𝑥 ) ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ( ◡ 𝑋 ⊆ 𝑦 → 𝑋 ⊆ 𝑥 ) ) |
| 62 |
61 1
|
anim12d |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ( ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) → ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
| 63 |
|
cnvun |
⊢ ◡ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ( ◡ ◡ 𝑦 ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
| 64 |
|
cnvnonrel |
⊢ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ∅ |
| 65 |
|
0ss |
⊢ ∅ ⊆ ◡ ◡ 𝑦 |
| 66 |
64 65
|
eqsstri |
⊢ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ◡ ◡ 𝑦 |
| 67 |
|
ssequn2 |
⊢ ( ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ◡ ◡ 𝑦 ↔ ( ◡ ◡ 𝑦 ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ◡ ◡ 𝑦 ) |
| 68 |
66 67
|
mpbi |
⊢ ( ◡ ◡ 𝑦 ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ◡ ◡ 𝑦 |
| 69 |
63 68
|
eqtr2i |
⊢ ◡ ◡ 𝑦 = ◡ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
| 70 |
|
cnveq |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ◡ 𝑥 = ◡ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
| 71 |
69 70
|
eqtr4id |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ◡ ◡ 𝑦 = ◡ 𝑥 ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ◡ ◡ 𝑦 = ◡ 𝑥 ) |
| 73 |
62 72
|
jctild |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ( ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) → ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
| 74 |
36 73
|
spcimedv |
⊢ ( 𝜑 → ( ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) → ∃ 𝑥 ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
| 75 |
74
|
imp |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) → ∃ 𝑥 ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
| 76 |
75
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = ◡ ◡ 𝑦 ) ∧ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) → ∃ 𝑥 ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
| 77 |
|
eqeq1 |
⊢ ( 𝑧 = ◡ ◡ 𝑦 → ( 𝑧 = ◡ 𝑥 ↔ ◡ ◡ 𝑦 = ◡ 𝑥 ) ) |
| 78 |
77
|
anbi1d |
⊢ ( 𝑧 = ◡ ◡ 𝑦 → ( ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ↔ ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
| 79 |
78
|
exbidv |
⊢ ( 𝑧 = ◡ ◡ 𝑦 → ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
| 80 |
79
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = ◡ ◡ 𝑦 ) ∧ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) → ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
| 81 |
76 80
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 = ◡ ◡ 𝑦 ) ∧ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) → ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
| 82 |
81
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 = ◡ ◡ 𝑦 ) → ( ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) → ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
| 83 |
|
cnvcnvss |
⊢ ◡ ◡ 𝑦 ⊆ 𝑦 |
| 84 |
83
|
a1i |
⊢ ( 𝜑 → ◡ ◡ 𝑦 ⊆ 𝑦 ) |
| 85 |
32 82 84
|
intabssd |
⊢ ( 𝜑 → ∩ { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } ⊆ ∩ { 𝑦 ∣ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) } ) |
| 86 |
|
vex |
⊢ 𝑧 ∈ V |
| 87 |
86
|
a1i |
⊢ ( 𝜑 → 𝑧 ∈ V ) |
| 88 |
|
eqtr |
⊢ ( ( 𝑦 = 𝑧 ∧ 𝑧 = ◡ 𝑥 ) → 𝑦 = ◡ 𝑥 ) |
| 89 |
|
cnvss |
⊢ ( 𝑋 ⊆ 𝑥 → ◡ 𝑋 ⊆ ◡ 𝑥 ) |
| 90 |
|
sseq2 |
⊢ ( 𝑦 = ◡ 𝑥 → ( ◡ 𝑋 ⊆ 𝑦 ↔ ◡ 𝑋 ⊆ ◡ 𝑥 ) ) |
| 91 |
89 90
|
imbitrrid |
⊢ ( 𝑦 = ◡ 𝑥 → ( 𝑋 ⊆ 𝑥 → ◡ 𝑋 ⊆ 𝑦 ) ) |
| 92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = ◡ 𝑥 ) → ( 𝑋 ⊆ 𝑥 → ◡ 𝑋 ⊆ 𝑦 ) ) |
| 93 |
92 2
|
anim12d |
⊢ ( ( 𝜑 ∧ 𝑦 = ◡ 𝑥 ) → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) |
| 94 |
93
|
ex |
⊢ ( 𝜑 → ( 𝑦 = ◡ 𝑥 → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) ) |
| 95 |
88 94
|
syl5 |
⊢ ( 𝜑 → ( ( 𝑦 = 𝑧 ∧ 𝑧 = ◡ 𝑥 ) → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) ) |
| 96 |
95
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑦 = 𝑧 ) ∧ 𝑧 = ◡ 𝑥 ) → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) |
| 97 |
96
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑧 ) → ( ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) |
| 98 |
97
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑧 ) → ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) |
| 99 |
|
ssid |
⊢ 𝑧 ⊆ 𝑧 |
| 100 |
99
|
a1i |
⊢ ( 𝜑 → 𝑧 ⊆ 𝑧 ) |
| 101 |
87 98 100
|
intabssd |
⊢ ( 𝜑 → ∩ { 𝑦 ∣ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) } ⊆ ∩ { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } ) |
| 102 |
85 101
|
eqssd |
⊢ ( 𝜑 → ∩ { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } = ∩ { 𝑦 ∣ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) } ) |
| 103 |
10 28 102
|
3eqtrd |
⊢ ( 𝜑 → ◡ ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } = ∩ { 𝑦 ∣ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) } ) |