Step |
Hyp |
Ref |
Expression |
1 |
|
clcnvlem.sub1 |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ( 𝜒 → 𝜓 ) ) |
2 |
|
clcnvlem.sub2 |
⊢ ( ( 𝜑 ∧ 𝑦 = ◡ 𝑥 ) → ( 𝜓 → 𝜒 ) ) |
3 |
|
clcnvlem.sub3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
4 |
|
clcnvlem.ssub |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
5 |
|
clcnvlem.ubex |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
6 |
|
clcnvlem.clex |
⊢ ( 𝜑 → 𝜃 ) |
7 |
4 6
|
jca |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝐴 ∧ 𝜃 ) ) |
8 |
3
|
cleq2lem |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ↔ ( 𝑋 ⊆ 𝐴 ∧ 𝜃 ) ) ) |
9 |
5 7 8
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) |
10 |
9
|
cnvintabd |
⊢ ( 𝜑 → ◡ ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } = ∩ { 𝑧 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } ) |
11 |
|
df-rab |
⊢ { 𝑧 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } = { 𝑧 ∣ ( 𝑧 ∈ 𝒫 ( V × V ) ∧ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) } |
12 |
|
exsimpl |
⊢ ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → ∃ 𝑥 𝑧 = ◡ 𝑥 ) |
13 |
|
relcnv |
⊢ Rel ◡ 𝑥 |
14 |
|
releq |
⊢ ( 𝑧 = ◡ 𝑥 → ( Rel 𝑧 ↔ Rel ◡ 𝑥 ) ) |
15 |
13 14
|
mpbiri |
⊢ ( 𝑧 = ◡ 𝑥 → Rel 𝑧 ) |
16 |
15
|
exlimiv |
⊢ ( ∃ 𝑥 𝑧 = ◡ 𝑥 → Rel 𝑧 ) |
17 |
12 16
|
syl |
⊢ ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → Rel 𝑧 ) |
18 |
|
df-rel |
⊢ ( Rel 𝑧 ↔ 𝑧 ⊆ ( V × V ) ) |
19 |
17 18
|
sylib |
⊢ ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → 𝑧 ⊆ ( V × V ) ) |
20 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 ( V × V ) ↔ 𝑧 ⊆ ( V × V ) ) |
21 |
20
|
bicomi |
⊢ ( 𝑧 ⊆ ( V × V ) ↔ 𝑧 ∈ 𝒫 ( V × V ) ) |
22 |
19 21
|
sylib |
⊢ ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → 𝑧 ∈ 𝒫 ( V × V ) ) |
23 |
22
|
pm4.71ri |
⊢ ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝒫 ( V × V ) ∧ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
24 |
23
|
bicomi |
⊢ ( ( 𝑧 ∈ 𝒫 ( V × V ) ∧ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ↔ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
25 |
24
|
abbii |
⊢ { 𝑧 ∣ ( 𝑧 ∈ 𝒫 ( V × V ) ∧ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) } = { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } |
26 |
11 25
|
eqtri |
⊢ { 𝑧 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } = { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } |
27 |
26
|
inteqi |
⊢ ∩ { 𝑧 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } = ∩ { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } |
28 |
27
|
a1i |
⊢ ( 𝜑 → ∩ { 𝑧 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } = ∩ { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } ) |
29 |
|
vex |
⊢ 𝑦 ∈ V |
30 |
29
|
cnvex |
⊢ ◡ 𝑦 ∈ V |
31 |
30
|
cnvex |
⊢ ◡ ◡ 𝑦 ∈ V |
32 |
31
|
a1i |
⊢ ( 𝜑 → ◡ ◡ 𝑦 ∈ V ) |
33 |
5 4
|
ssexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
34 |
33
|
difexd |
⊢ ( 𝜑 → ( 𝑋 ∖ ◡ ◡ 𝑋 ) ∈ V ) |
35 |
|
unexg |
⊢ ( ( ◡ 𝑦 ∈ V ∧ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ∈ V ) → ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∈ V ) |
36 |
30 34 35
|
sylancr |
⊢ ( 𝜑 → ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∈ V ) |
37 |
|
inundif |
⊢ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 |
38 |
|
cnvun |
⊢ ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ( ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
39 |
38
|
sseq1i |
⊢ ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 ↔ ( ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 ) |
40 |
39
|
biimpi |
⊢ ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 → ( ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 ) |
41 |
40
|
unssad |
⊢ ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 → ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ 𝑦 ) |
42 |
|
relcnv |
⊢ Rel ◡ ◡ 𝑋 |
43 |
|
relin2 |
⊢ ( Rel ◡ ◡ 𝑋 → Rel ( 𝑋 ∩ ◡ ◡ 𝑋 ) ) |
44 |
42 43
|
ax-mp |
⊢ Rel ( 𝑋 ∩ ◡ ◡ 𝑋 ) |
45 |
|
dfrel2 |
⊢ ( Rel ( 𝑋 ∩ ◡ ◡ 𝑋 ) ↔ ◡ ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) = ( 𝑋 ∩ ◡ ◡ 𝑋 ) ) |
46 |
44 45
|
mpbi |
⊢ ◡ ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) = ( 𝑋 ∩ ◡ ◡ 𝑋 ) |
47 |
|
cnvss |
⊢ ( ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ 𝑦 → ◡ ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ ◡ 𝑦 ) |
48 |
46 47
|
eqsstrrid |
⊢ ( ◡ ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ 𝑦 → ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ ◡ 𝑦 ) |
49 |
41 48
|
syl |
⊢ ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 → ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ ◡ 𝑦 ) |
50 |
|
ssid |
⊢ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ( 𝑋 ∖ ◡ ◡ 𝑋 ) |
51 |
|
unss12 |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ⊆ ◡ 𝑦 ∧ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
52 |
49 50 51
|
sylancl |
⊢ ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 → ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
53 |
52
|
a1i |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 → ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 → ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
54 |
|
cnveq |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 → ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ◡ 𝑋 ) |
55 |
54
|
sseq1d |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 → ( ◡ ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ 𝑦 ↔ ◡ 𝑋 ⊆ 𝑦 ) ) |
56 |
|
sseq1 |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 → ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ↔ 𝑋 ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
57 |
53 55 56
|
3imtr3d |
⊢ ( ( ( 𝑋 ∩ ◡ ◡ 𝑋 ) ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = 𝑋 → ( ◡ 𝑋 ⊆ 𝑦 → 𝑋 ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
58 |
37 57
|
ax-mp |
⊢ ( ◡ 𝑋 ⊆ 𝑦 → 𝑋 ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
59 |
|
sseq2 |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( 𝑋 ⊆ 𝑥 ↔ 𝑋 ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
60 |
58 59
|
syl5ibr |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( ◡ 𝑋 ⊆ 𝑦 → 𝑋 ⊆ 𝑥 ) ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ( ◡ 𝑋 ⊆ 𝑦 → 𝑋 ⊆ 𝑥 ) ) |
62 |
61 1
|
anim12d |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ( ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) → ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
63 |
|
cnvun |
⊢ ◡ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ( ◡ ◡ 𝑦 ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
64 |
|
cnvnonrel |
⊢ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ∅ |
65 |
|
0ss |
⊢ ∅ ⊆ ◡ ◡ 𝑦 |
66 |
64 65
|
eqsstri |
⊢ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ◡ ◡ 𝑦 |
67 |
|
ssequn2 |
⊢ ( ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ◡ ◡ 𝑦 ↔ ( ◡ ◡ 𝑦 ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ◡ ◡ 𝑦 ) |
68 |
66 67
|
mpbi |
⊢ ( ◡ ◡ 𝑦 ∪ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ◡ ◡ 𝑦 |
69 |
63 68
|
eqtr2i |
⊢ ◡ ◡ 𝑦 = ◡ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
70 |
|
cnveq |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ◡ 𝑥 = ◡ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
71 |
69 70
|
eqtr4id |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ◡ ◡ 𝑦 = ◡ 𝑥 ) |
72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ◡ ◡ 𝑦 = ◡ 𝑥 ) |
73 |
62 72
|
jctild |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ( ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) → ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
74 |
36 73
|
spcimedv |
⊢ ( 𝜑 → ( ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) → ∃ 𝑥 ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
75 |
74
|
imp |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) → ∃ 𝑥 ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
76 |
75
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = ◡ ◡ 𝑦 ) ∧ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) → ∃ 𝑥 ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
77 |
|
eqeq1 |
⊢ ( 𝑧 = ◡ ◡ 𝑦 → ( 𝑧 = ◡ 𝑥 ↔ ◡ ◡ 𝑦 = ◡ 𝑥 ) ) |
78 |
77
|
anbi1d |
⊢ ( 𝑧 = ◡ ◡ 𝑦 → ( ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ↔ ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
79 |
78
|
exbidv |
⊢ ( 𝑧 = ◡ ◡ 𝑦 → ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
80 |
79
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = ◡ ◡ 𝑦 ) ∧ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) → ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( ◡ ◡ 𝑦 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
81 |
76 80
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 = ◡ ◡ 𝑦 ) ∧ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) → ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) |
82 |
81
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 = ◡ ◡ 𝑦 ) → ( ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) → ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) ) ) |
83 |
|
cnvcnvss |
⊢ ◡ ◡ 𝑦 ⊆ 𝑦 |
84 |
83
|
a1i |
⊢ ( 𝜑 → ◡ ◡ 𝑦 ⊆ 𝑦 ) |
85 |
32 82 84
|
intabssd |
⊢ ( 𝜑 → ∩ { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } ⊆ ∩ { 𝑦 ∣ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) } ) |
86 |
|
vex |
⊢ 𝑧 ∈ V |
87 |
86
|
a1i |
⊢ ( 𝜑 → 𝑧 ∈ V ) |
88 |
|
eqtr |
⊢ ( ( 𝑦 = 𝑧 ∧ 𝑧 = ◡ 𝑥 ) → 𝑦 = ◡ 𝑥 ) |
89 |
|
cnvss |
⊢ ( 𝑋 ⊆ 𝑥 → ◡ 𝑋 ⊆ ◡ 𝑥 ) |
90 |
|
sseq2 |
⊢ ( 𝑦 = ◡ 𝑥 → ( ◡ 𝑋 ⊆ 𝑦 ↔ ◡ 𝑋 ⊆ ◡ 𝑥 ) ) |
91 |
89 90
|
syl5ibr |
⊢ ( 𝑦 = ◡ 𝑥 → ( 𝑋 ⊆ 𝑥 → ◡ 𝑋 ⊆ 𝑦 ) ) |
92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = ◡ 𝑥 ) → ( 𝑋 ⊆ 𝑥 → ◡ 𝑋 ⊆ 𝑦 ) ) |
93 |
92 2
|
anim12d |
⊢ ( ( 𝜑 ∧ 𝑦 = ◡ 𝑥 ) → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) |
94 |
93
|
ex |
⊢ ( 𝜑 → ( 𝑦 = ◡ 𝑥 → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) ) |
95 |
88 94
|
syl5 |
⊢ ( 𝜑 → ( ( 𝑦 = 𝑧 ∧ 𝑧 = ◡ 𝑥 ) → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) ) |
96 |
95
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑦 = 𝑧 ) ∧ 𝑧 = ◡ 𝑥 ) → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) |
97 |
96
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑧 ) → ( ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) |
98 |
97
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑧 ) → ( ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) → ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) ) ) |
99 |
|
ssid |
⊢ 𝑧 ⊆ 𝑧 |
100 |
99
|
a1i |
⊢ ( 𝜑 → 𝑧 ⊆ 𝑧 ) |
101 |
87 98 100
|
intabssd |
⊢ ( 𝜑 → ∩ { 𝑦 ∣ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) } ⊆ ∩ { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } ) |
102 |
85 101
|
eqssd |
⊢ ( 𝜑 → ∩ { 𝑧 ∣ ∃ 𝑥 ( 𝑧 = ◡ 𝑥 ∧ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ) } = ∩ { 𝑦 ∣ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) } ) |
103 |
10 28 102
|
3eqtrd |
⊢ ( 𝜑 → ◡ ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } = ∩ { 𝑦 ∣ ( ◡ 𝑋 ⊆ 𝑦 ∧ 𝜒 ) } ) |