Metamath Proof Explorer


Theorem cnvintabd

Description: Value of the converse of the intersection of a nonempty class. (Contributed by RP, 20-Aug-2020)

Ref Expression
Hypothesis cnvintabd.x ( 𝜑 → ∃ 𝑥 𝜓 )
Assertion cnvintabd ( 𝜑 { 𝑥𝜓 } = { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = 𝑥𝜓 ) } )

Proof

Step Hyp Ref Expression
1 cnvintabd.x ( 𝜑 → ∃ 𝑥 𝜓 )
2 pm5.5 ( ∃ 𝑥 𝜓 → ( ( ∃ 𝑥 𝜓𝑦 ∈ ( V × V ) ) ↔ 𝑦 ∈ ( V × V ) ) )
3 1 2 syl ( 𝜑 → ( ( ∃ 𝑥 𝜓𝑦 ∈ ( V × V ) ) ↔ 𝑦 ∈ ( V × V ) ) )
4 3 bicomd ( 𝜑 → ( 𝑦 ∈ ( V × V ) ↔ ( ∃ 𝑥 𝜓𝑦 ∈ ( V × V ) ) ) )
5 4 anbi1d ( 𝜑 → ( ( 𝑦 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜓𝑦 𝑥 ) ) ↔ ( ( ∃ 𝑥 𝜓𝑦 ∈ ( V × V ) ) ∧ ∀ 𝑥 ( 𝜓𝑦 𝑥 ) ) ) )
6 elcnvintab ( 𝑦 { 𝑥𝜓 } ↔ ( 𝑦 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜓𝑦 𝑥 ) ) )
7 vex 𝑥 ∈ V
8 7 cnvex 𝑥 ∈ V
9 relcnv Rel 𝑥
10 df-rel ( Rel 𝑥 𝑥 ⊆ ( V × V ) )
11 9 10 mpbi 𝑥 ⊆ ( V × V )
12 8 11 elmapintrab ( 𝑦 ∈ V → ( 𝑦 { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = 𝑥𝜓 ) } ↔ ( ( ∃ 𝑥 𝜓𝑦 ∈ ( V × V ) ) ∧ ∀ 𝑥 ( 𝜓𝑦 𝑥 ) ) ) )
13 12 elv ( 𝑦 { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = 𝑥𝜓 ) } ↔ ( ( ∃ 𝑥 𝜓𝑦 ∈ ( V × V ) ) ∧ ∀ 𝑥 ( 𝜓𝑦 𝑥 ) ) )
14 5 6 13 3bitr4g ( 𝜑 → ( 𝑦 { 𝑥𝜓 } ↔ 𝑦 { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = 𝑥𝜓 ) } ) )
15 14 eqrdv ( 𝜑 { 𝑥𝜓 } = { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = 𝑥𝜓 ) } )