| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvintabd.x |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
| 2 |
|
pm5.5 |
⊢ ( ∃ 𝑥 𝜓 → ( ( ∃ 𝑥 𝜓 → 𝑦 ∈ ( V × V ) ) ↔ 𝑦 ∈ ( V × V ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝜑 → ( ( ∃ 𝑥 𝜓 → 𝑦 ∈ ( V × V ) ) ↔ 𝑦 ∈ ( V × V ) ) ) |
| 4 |
3
|
bicomd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( V × V ) ↔ ( ∃ 𝑥 𝜓 → 𝑦 ∈ ( V × V ) ) ) ) |
| 5 |
4
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜓 → 𝑦 ∈ ◡ 𝑥 ) ) ↔ ( ( ∃ 𝑥 𝜓 → 𝑦 ∈ ( V × V ) ) ∧ ∀ 𝑥 ( 𝜓 → 𝑦 ∈ ◡ 𝑥 ) ) ) ) |
| 6 |
|
elcnvintab |
⊢ ( 𝑦 ∈ ◡ ∩ { 𝑥 ∣ 𝜓 } ↔ ( 𝑦 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜓 → 𝑦 ∈ ◡ 𝑥 ) ) ) |
| 7 |
|
vex |
⊢ 𝑥 ∈ V |
| 8 |
7
|
cnvex |
⊢ ◡ 𝑥 ∈ V |
| 9 |
|
relcnv |
⊢ Rel ◡ 𝑥 |
| 10 |
|
df-rel |
⊢ ( Rel ◡ 𝑥 ↔ ◡ 𝑥 ⊆ ( V × V ) ) |
| 11 |
9 10
|
mpbi |
⊢ ◡ 𝑥 ⊆ ( V × V ) |
| 12 |
8 11
|
elmapintrab |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ◡ 𝑥 ∧ 𝜓 ) } ↔ ( ( ∃ 𝑥 𝜓 → 𝑦 ∈ ( V × V ) ) ∧ ∀ 𝑥 ( 𝜓 → 𝑦 ∈ ◡ 𝑥 ) ) ) ) |
| 13 |
12
|
elv |
⊢ ( 𝑦 ∈ ∩ { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ◡ 𝑥 ∧ 𝜓 ) } ↔ ( ( ∃ 𝑥 𝜓 → 𝑦 ∈ ( V × V ) ) ∧ ∀ 𝑥 ( 𝜓 → 𝑦 ∈ ◡ 𝑥 ) ) ) |
| 14 |
5 6 13
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑦 ∈ ◡ ∩ { 𝑥 ∣ 𝜓 } ↔ 𝑦 ∈ ∩ { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ◡ 𝑥 ∧ 𝜓 ) } ) ) |
| 15 |
14
|
eqrdv |
⊢ ( 𝜑 → ◡ ∩ { 𝑥 ∣ 𝜓 } = ∩ { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ◡ 𝑥 ∧ 𝜓 ) } ) |