Metamath Proof Explorer


Theorem elcnvintab

Description: Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020)

Ref Expression
Assertion elcnvintab ( 𝐴 { 𝑥𝜑 } ↔ ( 𝐴 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜑𝐴 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑦 ∈ ( V × V ) ↦ ⟨ ( 2nd𝑦 ) , ( 1st𝑦 ) ⟩ ) = ( 𝑦 ∈ ( V × V ) ↦ ⟨ ( 2nd𝑦 ) , ( 1st𝑦 ) ⟩ )
2 1 elcnvlem ( 𝐴 { 𝑥𝜑 } ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 𝑦 ∈ ( V × V ) ↦ ⟨ ( 2nd𝑦 ) , ( 1st𝑦 ) ⟩ ) ‘ 𝐴 ) ∈ { 𝑥𝜑 } ) )
3 1 elcnvlem ( 𝐴 𝑥 ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 𝑦 ∈ ( V × V ) ↦ ⟨ ( 2nd𝑦 ) , ( 1st𝑦 ) ⟩ ) ‘ 𝐴 ) ∈ 𝑥 ) )
4 2 3 elmapintab ( 𝐴 { 𝑥𝜑 } ↔ ( 𝐴 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜑𝐴 𝑥 ) ) )