Description: Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcnvintab | ⊢ ( 𝐴 ∈ ◡ ∩ { 𝑥 ∣ 𝜑 } ↔ ( 𝐴 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ ◡ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑦 ∈ ( V × V ) ↦ 〈 ( 2nd ‘ 𝑦 ) , ( 1st ‘ 𝑦 ) 〉 ) = ( 𝑦 ∈ ( V × V ) ↦ 〈 ( 2nd ‘ 𝑦 ) , ( 1st ‘ 𝑦 ) 〉 ) | |
| 2 | 1 | elcnvlem | ⊢ ( 𝐴 ∈ ◡ ∩ { 𝑥 ∣ 𝜑 } ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 𝑦 ∈ ( V × V ) ↦ 〈 ( 2nd ‘ 𝑦 ) , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝐴 ) ∈ ∩ { 𝑥 ∣ 𝜑 } ) ) |
| 3 | 1 | elcnvlem | ⊢ ( 𝐴 ∈ ◡ 𝑥 ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 𝑦 ∈ ( V × V ) ↦ 〈 ( 2nd ‘ 𝑦 ) , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝐴 ) ∈ 𝑥 ) ) |
| 4 | 2 3 | elmapintab | ⊢ ( 𝐴 ∈ ◡ ∩ { 𝑥 ∣ 𝜑 } ↔ ( 𝐴 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ ◡ 𝑥 ) ) ) |