Metamath Proof Explorer


Theorem elcnvlem

Description: Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020)

Ref Expression
Hypothesis elcnvlem.f 𝐹 = ( 𝑥 ∈ ( V × V ) ↦ ⟨ ( 2nd𝑥 ) , ( 1st𝑥 ) ⟩ )
Assertion elcnvlem ( 𝐴 𝐵 ↔ ( 𝐴 ∈ ( V × V ) ∧ ( 𝐹𝐴 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elcnvlem.f 𝐹 = ( 𝑥 ∈ ( V × V ) ↦ ⟨ ( 2nd𝑥 ) , ( 1st𝑥 ) ⟩ )
2 elcnv2 ( 𝐴 𝐵 ↔ ∃ 𝑢𝑣 ( 𝐴 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ⟨ 𝑣 , 𝑢 ⟩ ∈ 𝐵 ) )
3 fveq2 ( 𝐴 = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝐹𝐴 ) = ( 𝐹 ‘ ⟨ 𝑢 , 𝑣 ⟩ ) )
4 vex 𝑢 ∈ V
5 vex 𝑣 ∈ V
6 4 5 opelvv 𝑢 , 𝑣 ⟩ ∈ ( V × V )
7 4 5 op2ndd ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ → ( 2nd𝑥 ) = 𝑣 )
8 4 5 op1std ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ → ( 1st𝑥 ) = 𝑢 )
9 7 8 opeq12d ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ → ⟨ ( 2nd𝑥 ) , ( 1st𝑥 ) ⟩ = ⟨ 𝑣 , 𝑢 ⟩ )
10 opex 𝑣 , 𝑢 ⟩ ∈ V
11 9 1 10 fvmpt ( ⟨ 𝑢 , 𝑣 ⟩ ∈ ( V × V ) → ( 𝐹 ‘ ⟨ 𝑢 , 𝑣 ⟩ ) = ⟨ 𝑣 , 𝑢 ⟩ )
12 6 11 ax-mp ( 𝐹 ‘ ⟨ 𝑢 , 𝑣 ⟩ ) = ⟨ 𝑣 , 𝑢
13 3 12 eqtrdi ( 𝐴 = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝐹𝐴 ) = ⟨ 𝑣 , 𝑢 ⟩ )
14 13 eleq1d ( 𝐴 = ⟨ 𝑢 , 𝑣 ⟩ → ( ( 𝐹𝐴 ) ∈ 𝐵 ↔ ⟨ 𝑣 , 𝑢 ⟩ ∈ 𝐵 ) )
15 14 copsex2gb ( ∃ 𝑢𝑣 ( 𝐴 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ⟨ 𝑣 , 𝑢 ⟩ ∈ 𝐵 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( 𝐹𝐴 ) ∈ 𝐵 ) )
16 2 15 bitri ( 𝐴 𝐵 ↔ ( 𝐴 ∈ ( V × V ) ∧ ( 𝐹𝐴 ) ∈ 𝐵 ) )