Step |
Hyp |
Ref |
Expression |
1 |
|
elcnvlem.f |
|- F = ( x e. ( _V X. _V ) |-> <. ( 2nd ` x ) , ( 1st ` x ) >. ) |
2 |
|
elcnv2 |
|- ( A e. `' B <-> E. u E. v ( A = <. u , v >. /\ <. v , u >. e. B ) ) |
3 |
|
fveq2 |
|- ( A = <. u , v >. -> ( F ` A ) = ( F ` <. u , v >. ) ) |
4 |
|
vex |
|- u e. _V |
5 |
|
vex |
|- v e. _V |
6 |
4 5
|
opelvv |
|- <. u , v >. e. ( _V X. _V ) |
7 |
4 5
|
op2ndd |
|- ( x = <. u , v >. -> ( 2nd ` x ) = v ) |
8 |
4 5
|
op1std |
|- ( x = <. u , v >. -> ( 1st ` x ) = u ) |
9 |
7 8
|
opeq12d |
|- ( x = <. u , v >. -> <. ( 2nd ` x ) , ( 1st ` x ) >. = <. v , u >. ) |
10 |
|
opex |
|- <. v , u >. e. _V |
11 |
9 1 10
|
fvmpt |
|- ( <. u , v >. e. ( _V X. _V ) -> ( F ` <. u , v >. ) = <. v , u >. ) |
12 |
6 11
|
ax-mp |
|- ( F ` <. u , v >. ) = <. v , u >. |
13 |
3 12
|
eqtrdi |
|- ( A = <. u , v >. -> ( F ` A ) = <. v , u >. ) |
14 |
13
|
eleq1d |
|- ( A = <. u , v >. -> ( ( F ` A ) e. B <-> <. v , u >. e. B ) ) |
15 |
14
|
copsex2gb |
|- ( E. u E. v ( A = <. u , v >. /\ <. v , u >. e. B ) <-> ( A e. ( _V X. _V ) /\ ( F ` A ) e. B ) ) |
16 |
2 15
|
bitri |
|- ( A e. `' B <-> ( A e. ( _V X. _V ) /\ ( F ` A ) e. B ) ) |