Description: Implicit substitution inference for ordered pairs. Compare copsex2ga . (Contributed by NM, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | copsex2ga.1 | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | copsex2gb | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | copsex2ga.1 | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elvv | ⊢ ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) | |
| 3 | 2 | anbi1i | ⊢ ( ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) |
| 4 | 19.41vv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) | |
| 5 | 1 | pm5.32i | ⊢ ( ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) |
| 6 | 5 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) |
| 7 | 3 4 6 | 3bitr2ri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) ) |