Metamath Proof Explorer


Theorem elmapintab

Description: Two ways to say a set is an element of mapped intersection of a class. Here F maps elements of C to elements of |^| { x | ph } or x . (Contributed by RP, 19-Aug-2020)

Ref Expression
Hypotheses elmapintab.1 ( 𝐴𝐵 ↔ ( 𝐴𝐶 ∧ ( 𝐹𝐴 ) ∈ { 𝑥𝜑 } ) )
elmapintab.2 ( 𝐴𝐸 ↔ ( 𝐴𝐶 ∧ ( 𝐹𝐴 ) ∈ 𝑥 ) )
Assertion elmapintab ( 𝐴𝐵 ↔ ( 𝐴𝐶 ∧ ∀ 𝑥 ( 𝜑𝐴𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 elmapintab.1 ( 𝐴𝐵 ↔ ( 𝐴𝐶 ∧ ( 𝐹𝐴 ) ∈ { 𝑥𝜑 } ) )
2 elmapintab.2 ( 𝐴𝐸 ↔ ( 𝐴𝐶 ∧ ( 𝐹𝐴 ) ∈ 𝑥 ) )
3 fvex ( 𝐹𝐴 ) ∈ V
4 3 elintab ( ( 𝐹𝐴 ) ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝑥 ) )
5 4 anbi2i ( ( 𝐴𝐶 ∧ ( 𝐹𝐴 ) ∈ { 𝑥𝜑 } ) ↔ ( 𝐴𝐶 ∧ ∀ 𝑥 ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝑥 ) ) )
6 2 baibr ( 𝐴𝐶 → ( ( 𝐹𝐴 ) ∈ 𝑥𝐴𝐸 ) )
7 6 imbi2d ( 𝐴𝐶 → ( ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝑥 ) ↔ ( 𝜑𝐴𝐸 ) ) )
8 7 albidv ( 𝐴𝐶 → ( ∀ 𝑥 ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝜑𝐴𝐸 ) ) )
9 8 pm5.32i ( ( 𝐴𝐶 ∧ ∀ 𝑥 ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝑥 ) ) ↔ ( 𝐴𝐶 ∧ ∀ 𝑥 ( 𝜑𝐴𝐸 ) ) )
10 1 5 9 3bitri ( 𝐴𝐵 ↔ ( 𝐴𝐶 ∧ ∀ 𝑥 ( 𝜑𝐴𝐸 ) ) )