Step |
Hyp |
Ref |
Expression |
1 |
|
elmapintab.1 |
⊢ ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ∩ { 𝑥 ∣ 𝜑 } ) ) |
2 |
|
elmapintab.2 |
⊢ ( 𝐴 ∈ 𝐸 ↔ ( 𝐴 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) |
3 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
4 |
3
|
elintab |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ∩ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝐴 ∈ 𝐶 ∧ ∀ 𝑥 ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) ) |
6 |
2
|
baibr |
⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ↔ 𝐴 ∈ 𝐸 ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ↔ ( 𝜑 → 𝐴 ∈ 𝐸 ) ) ) |
8 |
7
|
albidv |
⊢ ( 𝐴 ∈ 𝐶 → ( ∀ 𝑥 ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐸 ) ) ) |
9 |
8
|
pm5.32i |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ∀ 𝑥 ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) ↔ ( 𝐴 ∈ 𝐶 ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐸 ) ) ) |
10 |
1 5 9
|
3bitri |
⊢ ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐸 ) ) ) |