Metamath Proof Explorer


Theorem fvnonrel

Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020)

Ref Expression
Assertion fvnonrel ( ( 𝐴 𝐴 ) ‘ 𝑋 ) = ∅

Proof

Step Hyp Ref Expression
1 fvrn0 ( ( 𝐴 𝐴 ) ‘ 𝑋 ) ∈ ( ran ( 𝐴 𝐴 ) ∪ { ∅ } )
2 rnnonrel ran ( 𝐴 𝐴 ) = ∅
3 0ss ∅ ⊆ { ∅ }
4 2 3 eqsstri ran ( 𝐴 𝐴 ) ⊆ { ∅ }
5 ssequn1 ( ran ( 𝐴 𝐴 ) ⊆ { ∅ } ↔ ( ran ( 𝐴 𝐴 ) ∪ { ∅ } ) = { ∅ } )
6 4 5 mpbi ( ran ( 𝐴 𝐴 ) ∪ { ∅ } ) = { ∅ }
7 1 6 eleqtri ( ( 𝐴 𝐴 ) ‘ 𝑋 ) ∈ { ∅ }
8 fvex ( ( 𝐴 𝐴 ) ‘ 𝑋 ) ∈ V
9 8 elsn ( ( ( 𝐴 𝐴 ) ‘ 𝑋 ) ∈ { ∅ } ↔ ( ( 𝐴 𝐴 ) ‘ 𝑋 ) = ∅ )
10 7 9 mpbi ( ( 𝐴 𝐴 ) ‘ 𝑋 ) = ∅