| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvrn0 |
⊢ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ‘ 𝑋 ) ∈ ( ran ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∪ { ∅ } ) |
| 2 |
|
rnnonrel |
⊢ ran ( 𝐴 ∖ ◡ ◡ 𝐴 ) = ∅ |
| 3 |
|
0ss |
⊢ ∅ ⊆ { ∅ } |
| 4 |
2 3
|
eqsstri |
⊢ ran ( 𝐴 ∖ ◡ ◡ 𝐴 ) ⊆ { ∅ } |
| 5 |
|
ssequn1 |
⊢ ( ran ( 𝐴 ∖ ◡ ◡ 𝐴 ) ⊆ { ∅ } ↔ ( ran ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∪ { ∅ } ) = { ∅ } ) |
| 6 |
4 5
|
mpbi |
⊢ ( ran ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∪ { ∅ } ) = { ∅ } |
| 7 |
1 6
|
eleqtri |
⊢ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ‘ 𝑋 ) ∈ { ∅ } |
| 8 |
|
fvex |
⊢ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ‘ 𝑋 ) ∈ V |
| 9 |
8
|
elsn |
⊢ ( ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ‘ 𝑋 ) ∈ { ∅ } ↔ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ‘ 𝑋 ) = ∅ ) |
| 10 |
7 9
|
mpbi |
⊢ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ‘ 𝑋 ) = ∅ |