Metamath Proof Explorer


Theorem fvnonrel

Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020)

Ref Expression
Assertion fvnonrel
|- ( ( A \ `' `' A ) ` X ) = (/)

Proof

Step Hyp Ref Expression
1 fvrn0
 |-  ( ( A \ `' `' A ) ` X ) e. ( ran ( A \ `' `' A ) u. { (/) } )
2 rnnonrel
 |-  ran ( A \ `' `' A ) = (/)
3 0ss
 |-  (/) C_ { (/) }
4 2 3 eqsstri
 |-  ran ( A \ `' `' A ) C_ { (/) }
5 ssequn1
 |-  ( ran ( A \ `' `' A ) C_ { (/) } <-> ( ran ( A \ `' `' A ) u. { (/) } ) = { (/) } )
6 4 5 mpbi
 |-  ( ran ( A \ `' `' A ) u. { (/) } ) = { (/) }
7 1 6 eleqtri
 |-  ( ( A \ `' `' A ) ` X ) e. { (/) }
8 fvex
 |-  ( ( A \ `' `' A ) ` X ) e. _V
9 8 elsn
 |-  ( ( ( A \ `' `' A ) ` X ) e. { (/) } <-> ( ( A \ `' `' A ) ` X ) = (/) )
10 7 9 mpbi
 |-  ( ( A \ `' `' A ) ` X ) = (/)