| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvrn0 |
|- ( ( A \ `' `' A ) ` X ) e. ( ran ( A \ `' `' A ) u. { (/) } ) |
| 2 |
|
rnnonrel |
|- ran ( A \ `' `' A ) = (/) |
| 3 |
|
0ss |
|- (/) C_ { (/) } |
| 4 |
2 3
|
eqsstri |
|- ran ( A \ `' `' A ) C_ { (/) } |
| 5 |
|
ssequn1 |
|- ( ran ( A \ `' `' A ) C_ { (/) } <-> ( ran ( A \ `' `' A ) u. { (/) } ) = { (/) } ) |
| 6 |
4 5
|
mpbi |
|- ( ran ( A \ `' `' A ) u. { (/) } ) = { (/) } |
| 7 |
1 6
|
eleqtri |
|- ( ( A \ `' `' A ) ` X ) e. { (/) } |
| 8 |
|
fvex |
|- ( ( A \ `' `' A ) ` X ) e. _V |
| 9 |
8
|
elsn |
|- ( ( ( A \ `' `' A ) ` X ) e. { (/) } <-> ( ( A \ `' `' A ) ` X ) = (/) ) |
| 10 |
7 9
|
mpbi |
|- ( ( A \ `' `' A ) ` X ) = (/) |