Metamath Proof Explorer


Theorem elinlem

Description: Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020)

Ref Expression
Assertion elinlem
|- ( A e. ( B i^i C ) <-> ( A e. B /\ ( _I ` A ) e. C ) )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) )
2 fvi
 |-  ( A e. B -> ( _I ` A ) = A )
3 2 eqcomd
 |-  ( A e. B -> A = ( _I ` A ) )
4 3 eleq1d
 |-  ( A e. B -> ( A e. C <-> ( _I ` A ) e. C ) )
5 4 pm5.32i
 |-  ( ( A e. B /\ A e. C ) <-> ( A e. B /\ ( _I ` A ) e. C ) )
6 1 5 bitri
 |-  ( A e. ( B i^i C ) <-> ( A e. B /\ ( _I ` A ) e. C ) )