Description: Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elinlem | |- ( A e. ( B i^i C ) <-> ( A e. B /\ ( _I ` A ) e. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | |- ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) ) |
|
2 | fvi | |- ( A e. B -> ( _I ` A ) = A ) |
|
3 | 2 | eqcomd | |- ( A e. B -> A = ( _I ` A ) ) |
4 | 3 | eleq1d | |- ( A e. B -> ( A e. C <-> ( _I ` A ) e. C ) ) |
5 | 4 | pm5.32i | |- ( ( A e. B /\ A e. C ) <-> ( A e. B /\ ( _I ` A ) e. C ) ) |
6 | 1 5 | bitri | |- ( A e. ( B i^i C ) <-> ( A e. B /\ ( _I ` A ) e. C ) ) |