Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elcnvcnvlem | |- ( A e. `' `' B <-> ( A e. ( _V X. _V ) /\ ( _I ` A ) e. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv | |- `' `' B = ( B i^i ( _V X. _V ) ) |
|
2 | incom | |- ( B i^i ( _V X. _V ) ) = ( ( _V X. _V ) i^i B ) |
|
3 | 1 2 | eqtri | |- `' `' B = ( ( _V X. _V ) i^i B ) |
4 | 3 | eleq2i | |- ( A e. `' `' B <-> A e. ( ( _V X. _V ) i^i B ) ) |
5 | elinlem | |- ( A e. ( ( _V X. _V ) i^i B ) <-> ( A e. ( _V X. _V ) /\ ( _I ` A ) e. B ) ) |
|
6 | 4 5 | bitri | |- ( A e. `' `' B <-> ( A e. ( _V X. _V ) /\ ( _I ` A ) e. B ) ) |