Metamath Proof Explorer


Theorem elcnvcnvlem

Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020)

Ref Expression
Assertion elcnvcnvlem
|- ( A e. `' `' B <-> ( A e. ( _V X. _V ) /\ ( _I ` A ) e. B ) )

Proof

Step Hyp Ref Expression
1 cnvcnv
 |-  `' `' B = ( B i^i ( _V X. _V ) )
2 incom
 |-  ( B i^i ( _V X. _V ) ) = ( ( _V X. _V ) i^i B )
3 1 2 eqtri
 |-  `' `' B = ( ( _V X. _V ) i^i B )
4 3 eleq2i
 |-  ( A e. `' `' B <-> A e. ( ( _V X. _V ) i^i B ) )
5 elinlem
 |-  ( A e. ( ( _V X. _V ) i^i B ) <-> ( A e. ( _V X. _V ) /\ ( _I ` A ) e. B ) )
6 4 5 bitri
 |-  ( A e. `' `' B <-> ( A e. ( _V X. _V ) /\ ( _I ` A ) e. B ) )