Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elcnvcnvlem | ⊢ ( 𝐴 ∈ ◡ ◡ 𝐵 ↔ ( 𝐴 ∈ ( V × V ) ∧ ( I ‘ 𝐴 ) ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv | ⊢ ◡ ◡ 𝐵 = ( 𝐵 ∩ ( V × V ) ) | |
2 | incom | ⊢ ( 𝐵 ∩ ( V × V ) ) = ( ( V × V ) ∩ 𝐵 ) | |
3 | 1 2 | eqtri | ⊢ ◡ ◡ 𝐵 = ( ( V × V ) ∩ 𝐵 ) |
4 | 3 | eleq2i | ⊢ ( 𝐴 ∈ ◡ ◡ 𝐵 ↔ 𝐴 ∈ ( ( V × V ) ∩ 𝐵 ) ) |
5 | elinlem | ⊢ ( 𝐴 ∈ ( ( V × V ) ∩ 𝐵 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( I ‘ 𝐴 ) ∈ 𝐵 ) ) | |
6 | 4 5 | bitri | ⊢ ( 𝐴 ∈ ◡ ◡ 𝐵 ↔ ( 𝐴 ∈ ( V × V ) ∧ ( I ‘ 𝐴 ) ∈ 𝐵 ) ) |