Metamath Proof Explorer


Theorem elcnvcnvlem

Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020)

Ref Expression
Assertion elcnvcnvlem ( 𝐴 𝐵 ↔ ( 𝐴 ∈ ( V × V ) ∧ ( I ‘ 𝐴 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 cnvcnv 𝐵 = ( 𝐵 ∩ ( V × V ) )
2 incom ( 𝐵 ∩ ( V × V ) ) = ( ( V × V ) ∩ 𝐵 )
3 1 2 eqtri 𝐵 = ( ( V × V ) ∩ 𝐵 )
4 3 eleq2i ( 𝐴 𝐵𝐴 ∈ ( ( V × V ) ∩ 𝐵 ) )
5 elinlem ( 𝐴 ∈ ( ( V × V ) ∩ 𝐵 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( I ‘ 𝐴 ) ∈ 𝐵 ) )
6 4 5 bitri ( 𝐴 𝐵 ↔ ( 𝐴 ∈ ( V × V ) ∧ ( I ‘ 𝐴 ) ∈ 𝐵 ) )