Description: Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elinlem | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( I ‘ 𝐴 ) ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) | |
| 2 | fvi | ⊢ ( 𝐴 ∈ 𝐵 → ( I ‘ 𝐴 ) = 𝐴 ) | |
| 3 | 2 | eqcomd | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 = ( I ‘ 𝐴 ) ) |
| 4 | 3 | eleq1d | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐶 ↔ ( I ‘ 𝐴 ) ∈ 𝐶 ) ) |
| 5 | 4 | pm5.32i | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( I ‘ 𝐴 ) ∈ 𝐶 ) ) |
| 6 | 1 5 | bitri | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( I ‘ 𝐴 ) ∈ 𝐶 ) ) |