Metamath Proof Explorer


Theorem elinlem

Description: Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020)

Ref Expression
Assertion elinlem ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ∧ ( I ‘ 𝐴 ) ∈ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )
2 fvi ( 𝐴𝐵 → ( I ‘ 𝐴 ) = 𝐴 )
3 2 eqcomd ( 𝐴𝐵𝐴 = ( I ‘ 𝐴 ) )
4 3 eleq1d ( 𝐴𝐵 → ( 𝐴𝐶 ↔ ( I ‘ 𝐴 ) ∈ 𝐶 ) )
5 4 pm5.32i ( ( 𝐴𝐵𝐴𝐶 ) ↔ ( 𝐴𝐵 ∧ ( I ‘ 𝐴 ) ∈ 𝐶 ) )
6 1 5 bitri ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ∧ ( I ‘ 𝐴 ) ∈ 𝐶 ) )