Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
RP ADDTO: Functions
elinlem
Next ⟩
elcnvcnvlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
elinlem
Description:
Two ways to say a set is a member of an intersection.
(Contributed by
RP
, 19-Aug-2020)
Ref
Expression
Assertion
elinlem
⊢
A
∈
B
∩
C
↔
A
∈
B
∧
I
⁡
A
∈
C
Proof
Step
Hyp
Ref
Expression
1
elin
⊢
A
∈
B
∩
C
↔
A
∈
B
∧
A
∈
C
2
fvi
⊢
A
∈
B
→
I
⁡
A
=
A
3
2
eqcomd
⊢
A
∈
B
→
A
=
I
⁡
A
4
3
eleq1d
⊢
A
∈
B
→
A
∈
C
↔
I
⁡
A
∈
C
5
4
pm5.32i
⊢
A
∈
B
∧
A
∈
C
↔
A
∈
B
∧
I
⁡
A
∈
C
6
1
5
bitri
⊢
A
∈
B
∩
C
↔
A
∈
B
∧
I
⁡
A
∈
C