Description: There is exactly one element in a singleton. Exercise 2 of TakeutiZaring p. 15. (Contributed by NM, 13-Sep-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elsn.1 | ⊢ 𝐴 ∈ V | |
Assertion | elsn | ⊢ ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn.1 | ⊢ 𝐴 ∈ V | |
2 | elsng | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) |