Metamath Proof Explorer


Theorem elsn

Description: There is exactly one element in a singleton. Exercise 2 of TakeutiZaring p. 15. (Contributed by NM, 13-Sep-1995)

Ref Expression
Hypothesis elsn.1 𝐴 ∈ V
Assertion elsn ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 elsn.1 𝐴 ∈ V
2 elsng ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )
3 1 2 ax-mp ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 )