Metamath Proof Explorer


Theorem elmapintab

Description: Two ways to say a set is an element of mapped intersection of a class. Here F maps elements of C to elements of |^| { x | ph } or x . (Contributed by RP, 19-Aug-2020)

Ref Expression
Hypotheses elmapintab.1 A B A C F A x | φ
elmapintab.2 A E A C F A x
Assertion elmapintab A B A C x φ A E

Proof

Step Hyp Ref Expression
1 elmapintab.1 A B A C F A x | φ
2 elmapintab.2 A E A C F A x
3 fvex F A V
4 3 elintab F A x | φ x φ F A x
5 4 anbi2i A C F A x | φ A C x φ F A x
6 2 baibr A C F A x A E
7 6 imbi2d A C φ F A x φ A E
8 7 albidv A C x φ F A x x φ A E
9 8 pm5.32i A C x φ F A x A C x φ A E
10 1 5 9 3bitri A B A C x φ A E