Metamath Proof Explorer


Theorem elmapintab

Description: Two ways to say a set is an element of mapped intersection of a class. Here F maps elements of C to elements of |^| { x | ph } or x . (Contributed by RP, 19-Aug-2020)

Ref Expression
Hypotheses elmapintab.1
|- ( A e. B <-> ( A e. C /\ ( F ` A ) e. |^| { x | ph } ) )
elmapintab.2
|- ( A e. E <-> ( A e. C /\ ( F ` A ) e. x ) )
Assertion elmapintab
|- ( A e. B <-> ( A e. C /\ A. x ( ph -> A e. E ) ) )

Proof

Step Hyp Ref Expression
1 elmapintab.1
 |-  ( A e. B <-> ( A e. C /\ ( F ` A ) e. |^| { x | ph } ) )
2 elmapintab.2
 |-  ( A e. E <-> ( A e. C /\ ( F ` A ) e. x ) )
3 fvex
 |-  ( F ` A ) e. _V
4 3 elintab
 |-  ( ( F ` A ) e. |^| { x | ph } <-> A. x ( ph -> ( F ` A ) e. x ) )
5 4 anbi2i
 |-  ( ( A e. C /\ ( F ` A ) e. |^| { x | ph } ) <-> ( A e. C /\ A. x ( ph -> ( F ` A ) e. x ) ) )
6 2 baibr
 |-  ( A e. C -> ( ( F ` A ) e. x <-> A e. E ) )
7 6 imbi2d
 |-  ( A e. C -> ( ( ph -> ( F ` A ) e. x ) <-> ( ph -> A e. E ) ) )
8 7 albidv
 |-  ( A e. C -> ( A. x ( ph -> ( F ` A ) e. x ) <-> A. x ( ph -> A e. E ) ) )
9 8 pm5.32i
 |-  ( ( A e. C /\ A. x ( ph -> ( F ` A ) e. x ) ) <-> ( A e. C /\ A. x ( ph -> A e. E ) ) )
10 1 5 9 3bitri
 |-  ( A e. B <-> ( A e. C /\ A. x ( ph -> A e. E ) ) )