Metamath Proof Explorer


Definition df-rel

Description: Define the relation predicate. Definition 6.4(1) of TakeutiZaring p. 23. For alternate definitions, see dfrel2 and dfrel3 . (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion df-rel ( Rel 𝐴𝐴 ⊆ ( V × V ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 0 wrel Rel 𝐴
2 cvv V
3 2 2 cxp ( V × V )
4 0 3 wss 𝐴 ⊆ ( V × V )
5 1 4 wb ( Rel 𝐴𝐴 ⊆ ( V × V ) )