Metamath Proof Explorer


Theorem elmapintrab

Description: Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020)

Ref Expression
Hypotheses elmapintrab.ex 𝐶 ∈ V
elmapintrab.sub 𝐶𝐵
Assertion elmapintrab ( 𝐴𝑉 → ( 𝐴 { 𝑤 ∈ 𝒫 𝐵 ∣ ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) } ↔ ( ( ∃ 𝑥 𝜑𝐴𝐵 ) ∧ ∀ 𝑥 ( 𝜑𝐴𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 elmapintrab.ex 𝐶 ∈ V
2 elmapintrab.sub 𝐶𝐵
3 elintrabg ( 𝐴𝑉 → ( 𝐴 { 𝑤 ∈ 𝒫 𝐵 ∣ ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) } ↔ ∀ 𝑤 ∈ 𝒫 𝐵 ( ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) )
4 df-ral ( ∀ 𝑤 ∈ 𝒫 𝐵 ( ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ↔ ∀ 𝑤 ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) )
5 3 4 bitrdi ( 𝐴𝑉 → ( 𝐴 { 𝑤 ∈ 𝒫 𝐵 ∣ ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) } ↔ ∀ 𝑤 ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) ) )
6 velpw ( 𝑤 ∈ 𝒫 𝐵𝑤𝐵 )
7 19.23v ( ∀ 𝑥 ( ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ↔ ( ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) )
8 7 bicomi ( ( ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ↔ ∀ 𝑥 ( ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) )
9 6 8 imbi12i ( ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) ↔ ( 𝑤𝐵 → ∀ 𝑥 ( ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) )
10 19.21v ( ∀ 𝑥 ( 𝑤𝐵 → ( ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) ↔ ( 𝑤𝐵 → ∀ 𝑥 ( ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) )
11 bi2.04 ( ( 𝑤𝐵 → ( ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) ↔ ( ( 𝑤 = 𝐶𝜑 ) → ( 𝑤𝐵𝐴𝑤 ) ) )
12 impexp ( ( ( 𝑤 = 𝐶𝜑 ) → ( 𝑤𝐵𝐴𝑤 ) ) ↔ ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) )
13 11 12 bitri ( ( 𝑤𝐵 → ( ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) ↔ ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) )
14 13 albii ( ∀ 𝑥 ( 𝑤𝐵 → ( ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) ↔ ∀ 𝑥 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) )
15 9 10 14 3bitr2i ( ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) ↔ ∀ 𝑥 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) )
16 15 albii ( ∀ 𝑤 ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) ↔ ∀ 𝑤𝑥 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) )
17 alcom ( ∀ 𝑤𝑥 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) ↔ ∀ 𝑥𝑤 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) )
18 sseq1 ( 𝑤 = 𝐶 → ( 𝑤𝐵𝐶𝐵 ) )
19 eleq2 ( 𝑤 = 𝐶 → ( 𝐴𝑤𝐴𝐶 ) )
20 2 sseli ( 𝐴𝐶𝐴𝐵 )
21 20 pm4.71ri ( 𝐴𝐶 ↔ ( 𝐴𝐵𝐴𝐶 ) )
22 19 21 bitrdi ( 𝑤 = 𝐶 → ( 𝐴𝑤 ↔ ( 𝐴𝐵𝐴𝐶 ) ) )
23 18 22 imbi12d ( 𝑤 = 𝐶 → ( ( 𝑤𝐵𝐴𝑤 ) ↔ ( 𝐶𝐵 → ( 𝐴𝐵𝐴𝐶 ) ) ) )
24 23 imbi2d ( 𝑤 = 𝐶 → ( ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ↔ ( 𝜑 → ( 𝐶𝐵 → ( 𝐴𝐵𝐴𝐶 ) ) ) ) )
25 1 24 ceqsalv ( ∀ 𝑤 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) ↔ ( 𝜑 → ( 𝐶𝐵 → ( 𝐴𝐵𝐴𝐶 ) ) ) )
26 bi2.04 ( ( 𝜑 → ( 𝐶𝐵 → ( 𝐴𝐵𝐴𝐶 ) ) ) ↔ ( 𝐶𝐵 → ( 𝜑 → ( 𝐴𝐵𝐴𝐶 ) ) ) )
27 pm5.5 ( 𝐶𝐵 → ( ( 𝐶𝐵 → ( 𝜑 → ( 𝐴𝐵𝐴𝐶 ) ) ) ↔ ( 𝜑 → ( 𝐴𝐵𝐴𝐶 ) ) ) )
28 2 27 ax-mp ( ( 𝐶𝐵 → ( 𝜑 → ( 𝐴𝐵𝐴𝐶 ) ) ) ↔ ( 𝜑 → ( 𝐴𝐵𝐴𝐶 ) ) )
29 jcab ( ( 𝜑 → ( 𝐴𝐵𝐴𝐶 ) ) ↔ ( ( 𝜑𝐴𝐵 ) ∧ ( 𝜑𝐴𝐶 ) ) )
30 28 29 bitri ( ( 𝐶𝐵 → ( 𝜑 → ( 𝐴𝐵𝐴𝐶 ) ) ) ↔ ( ( 𝜑𝐴𝐵 ) ∧ ( 𝜑𝐴𝐶 ) ) )
31 25 26 30 3bitri ( ∀ 𝑤 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) ↔ ( ( 𝜑𝐴𝐵 ) ∧ ( 𝜑𝐴𝐶 ) ) )
32 31 albii ( ∀ 𝑥𝑤 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) ↔ ∀ 𝑥 ( ( 𝜑𝐴𝐵 ) ∧ ( 𝜑𝐴𝐶 ) ) )
33 19.26 ( ∀ 𝑥 ( ( 𝜑𝐴𝐵 ) ∧ ( 𝜑𝐴𝐶 ) ) ↔ ( ∀ 𝑥 ( 𝜑𝐴𝐵 ) ∧ ∀ 𝑥 ( 𝜑𝐴𝐶 ) ) )
34 19.23v ( ∀ 𝑥 ( 𝜑𝐴𝐵 ) ↔ ( ∃ 𝑥 𝜑𝐴𝐵 ) )
35 34 anbi1i ( ( ∀ 𝑥 ( 𝜑𝐴𝐵 ) ∧ ∀ 𝑥 ( 𝜑𝐴𝐶 ) ) ↔ ( ( ∃ 𝑥 𝜑𝐴𝐵 ) ∧ ∀ 𝑥 ( 𝜑𝐴𝐶 ) ) )
36 32 33 35 3bitri ( ∀ 𝑥𝑤 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤𝐵𝐴𝑤 ) ) ) ↔ ( ( ∃ 𝑥 𝜑𝐴𝐵 ) ∧ ∀ 𝑥 ( 𝜑𝐴𝐶 ) ) )
37 16 17 36 3bitri ( ∀ 𝑤 ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) → 𝐴𝑤 ) ) ↔ ( ( ∃ 𝑥 𝜑𝐴𝐵 ) ∧ ∀ 𝑥 ( 𝜑𝐴𝐶 ) ) )
38 5 37 bitrdi ( 𝐴𝑉 → ( 𝐴 { 𝑤 ∈ 𝒫 𝐵 ∣ ∃ 𝑥 ( 𝑤 = 𝐶𝜑 ) } ↔ ( ( ∃ 𝑥 𝜑𝐴𝐵 ) ∧ ∀ 𝑥 ( 𝜑𝐴𝐶 ) ) ) )