Step |
Hyp |
Ref |
Expression |
1 |
|
elmapintrab.ex |
⊢ 𝐶 ∈ V |
2 |
|
elmapintrab.sub |
⊢ 𝐶 ⊆ 𝐵 |
3 |
|
elintrabg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ { 𝑤 ∈ 𝒫 𝐵 ∣ ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) } ↔ ∀ 𝑤 ∈ 𝒫 𝐵 ( ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ) |
4 |
|
df-ral |
⊢ ( ∀ 𝑤 ∈ 𝒫 𝐵 ( ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ↔ ∀ 𝑤 ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ) |
5 |
3 4
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ { 𝑤 ∈ 𝒫 𝐵 ∣ ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) } ↔ ∀ 𝑤 ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ) ) |
6 |
|
velpw |
⊢ ( 𝑤 ∈ 𝒫 𝐵 ↔ 𝑤 ⊆ 𝐵 ) |
7 |
|
19.23v |
⊢ ( ∀ 𝑥 ( ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ↔ ( ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) |
8 |
7
|
bicomi |
⊢ ( ( ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ↔ ∀ 𝑥 ( ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) |
9 |
6 8
|
imbi12i |
⊢ ( ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ↔ ( 𝑤 ⊆ 𝐵 → ∀ 𝑥 ( ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ) |
10 |
|
19.21v |
⊢ ( ∀ 𝑥 ( 𝑤 ⊆ 𝐵 → ( ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ↔ ( 𝑤 ⊆ 𝐵 → ∀ 𝑥 ( ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ) |
11 |
|
bi2.04 |
⊢ ( ( 𝑤 ⊆ 𝐵 → ( ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ↔ ( ( 𝑤 = 𝐶 ∧ 𝜑 ) → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) |
12 |
|
impexp |
⊢ ( ( ( 𝑤 = 𝐶 ∧ 𝜑 ) → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ↔ ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ) |
13 |
11 12
|
bitri |
⊢ ( ( 𝑤 ⊆ 𝐵 → ( ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ↔ ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ) |
14 |
13
|
albii |
⊢ ( ∀ 𝑥 ( 𝑤 ⊆ 𝐵 → ( ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ↔ ∀ 𝑥 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ) |
15 |
9 10 14
|
3bitr2i |
⊢ ( ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ↔ ∀ 𝑥 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ) |
16 |
15
|
albii |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ↔ ∀ 𝑤 ∀ 𝑥 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ) |
17 |
|
alcom |
⊢ ( ∀ 𝑤 ∀ 𝑥 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ↔ ∀ 𝑥 ∀ 𝑤 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ) |
18 |
|
sseq1 |
⊢ ( 𝑤 = 𝐶 → ( 𝑤 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵 ) ) |
19 |
|
eleq2 |
⊢ ( 𝑤 = 𝐶 → ( 𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝐶 ) ) |
20 |
2
|
sseli |
⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ 𝐵 ) |
21 |
20
|
pm4.71ri |
⊢ ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
22 |
19 21
|
bitrdi |
⊢ ( 𝑤 = 𝐶 → ( 𝐴 ∈ 𝑤 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) |
23 |
18 22
|
imbi12d |
⊢ ( 𝑤 = 𝐶 → ( ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ↔ ( 𝐶 ⊆ 𝐵 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑤 = 𝐶 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ↔ ( 𝜑 → ( 𝐶 ⊆ 𝐵 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) ) ) |
25 |
1 24
|
ceqsalv |
⊢ ( ∀ 𝑤 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ↔ ( 𝜑 → ( 𝐶 ⊆ 𝐵 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) ) |
26 |
|
bi2.04 |
⊢ ( ( 𝜑 → ( 𝐶 ⊆ 𝐵 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) ↔ ( 𝐶 ⊆ 𝐵 → ( 𝜑 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) ) |
27 |
|
pm5.5 |
⊢ ( 𝐶 ⊆ 𝐵 → ( ( 𝐶 ⊆ 𝐵 → ( 𝜑 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) ↔ ( 𝜑 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) ) |
28 |
2 27
|
ax-mp |
⊢ ( ( 𝐶 ⊆ 𝐵 → ( 𝜑 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) ↔ ( 𝜑 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) |
29 |
|
jcab |
⊢ ( ( 𝜑 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ↔ ( ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ) |
30 |
28 29
|
bitri |
⊢ ( ( 𝐶 ⊆ 𝐵 → ( 𝜑 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) ↔ ( ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ) |
31 |
25 26 30
|
3bitri |
⊢ ( ∀ 𝑤 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ↔ ( ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ) |
32 |
31
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ↔ ∀ 𝑥 ( ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ) |
33 |
|
19.26 |
⊢ ( ∀ 𝑥 ( ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ) |
34 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐵 ) ↔ ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ) |
35 |
34
|
anbi1i |
⊢ ( ( ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ) |
36 |
32 33 35
|
3bitri |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 = 𝐶 → ( 𝜑 → ( 𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤 ) ) ) ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ) |
37 |
16 17 36
|
3bitri |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝒫 𝐵 → ( ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) → 𝐴 ∈ 𝑤 ) ) ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ) |
38 |
5 37
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ { 𝑤 ∈ 𝒫 𝐵 ∣ ∃ 𝑥 ( 𝑤 = 𝐶 ∧ 𝜑 ) } ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐶 ) ) ) ) |