Step |
Hyp |
Ref |
Expression |
1 |
|
elmapintrab.ex |
|- C e. _V |
2 |
|
elmapintrab.sub |
|- C C_ B |
3 |
|
elintrabg |
|- ( A e. V -> ( A e. |^| { w e. ~P B | E. x ( w = C /\ ph ) } <-> A. w e. ~P B ( E. x ( w = C /\ ph ) -> A e. w ) ) ) |
4 |
|
df-ral |
|- ( A. w e. ~P B ( E. x ( w = C /\ ph ) -> A e. w ) <-> A. w ( w e. ~P B -> ( E. x ( w = C /\ ph ) -> A e. w ) ) ) |
5 |
3 4
|
bitrdi |
|- ( A e. V -> ( A e. |^| { w e. ~P B | E. x ( w = C /\ ph ) } <-> A. w ( w e. ~P B -> ( E. x ( w = C /\ ph ) -> A e. w ) ) ) ) |
6 |
|
velpw |
|- ( w e. ~P B <-> w C_ B ) |
7 |
|
19.23v |
|- ( A. x ( ( w = C /\ ph ) -> A e. w ) <-> ( E. x ( w = C /\ ph ) -> A e. w ) ) |
8 |
7
|
bicomi |
|- ( ( E. x ( w = C /\ ph ) -> A e. w ) <-> A. x ( ( w = C /\ ph ) -> A e. w ) ) |
9 |
6 8
|
imbi12i |
|- ( ( w e. ~P B -> ( E. x ( w = C /\ ph ) -> A e. w ) ) <-> ( w C_ B -> A. x ( ( w = C /\ ph ) -> A e. w ) ) ) |
10 |
|
19.21v |
|- ( A. x ( w C_ B -> ( ( w = C /\ ph ) -> A e. w ) ) <-> ( w C_ B -> A. x ( ( w = C /\ ph ) -> A e. w ) ) ) |
11 |
|
bi2.04 |
|- ( ( w C_ B -> ( ( w = C /\ ph ) -> A e. w ) ) <-> ( ( w = C /\ ph ) -> ( w C_ B -> A e. w ) ) ) |
12 |
|
impexp |
|- ( ( ( w = C /\ ph ) -> ( w C_ B -> A e. w ) ) <-> ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) ) |
13 |
11 12
|
bitri |
|- ( ( w C_ B -> ( ( w = C /\ ph ) -> A e. w ) ) <-> ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) ) |
14 |
13
|
albii |
|- ( A. x ( w C_ B -> ( ( w = C /\ ph ) -> A e. w ) ) <-> A. x ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) ) |
15 |
9 10 14
|
3bitr2i |
|- ( ( w e. ~P B -> ( E. x ( w = C /\ ph ) -> A e. w ) ) <-> A. x ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) ) |
16 |
15
|
albii |
|- ( A. w ( w e. ~P B -> ( E. x ( w = C /\ ph ) -> A e. w ) ) <-> A. w A. x ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) ) |
17 |
|
alcom |
|- ( A. w A. x ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) <-> A. x A. w ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) ) |
18 |
|
sseq1 |
|- ( w = C -> ( w C_ B <-> C C_ B ) ) |
19 |
|
eleq2 |
|- ( w = C -> ( A e. w <-> A e. C ) ) |
20 |
2
|
sseli |
|- ( A e. C -> A e. B ) |
21 |
20
|
pm4.71ri |
|- ( A e. C <-> ( A e. B /\ A e. C ) ) |
22 |
19 21
|
bitrdi |
|- ( w = C -> ( A e. w <-> ( A e. B /\ A e. C ) ) ) |
23 |
18 22
|
imbi12d |
|- ( w = C -> ( ( w C_ B -> A e. w ) <-> ( C C_ B -> ( A e. B /\ A e. C ) ) ) ) |
24 |
23
|
imbi2d |
|- ( w = C -> ( ( ph -> ( w C_ B -> A e. w ) ) <-> ( ph -> ( C C_ B -> ( A e. B /\ A e. C ) ) ) ) ) |
25 |
1 24
|
ceqsalv |
|- ( A. w ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) <-> ( ph -> ( C C_ B -> ( A e. B /\ A e. C ) ) ) ) |
26 |
|
bi2.04 |
|- ( ( ph -> ( C C_ B -> ( A e. B /\ A e. C ) ) ) <-> ( C C_ B -> ( ph -> ( A e. B /\ A e. C ) ) ) ) |
27 |
|
pm5.5 |
|- ( C C_ B -> ( ( C C_ B -> ( ph -> ( A e. B /\ A e. C ) ) ) <-> ( ph -> ( A e. B /\ A e. C ) ) ) ) |
28 |
2 27
|
ax-mp |
|- ( ( C C_ B -> ( ph -> ( A e. B /\ A e. C ) ) ) <-> ( ph -> ( A e. B /\ A e. C ) ) ) |
29 |
|
jcab |
|- ( ( ph -> ( A e. B /\ A e. C ) ) <-> ( ( ph -> A e. B ) /\ ( ph -> A e. C ) ) ) |
30 |
28 29
|
bitri |
|- ( ( C C_ B -> ( ph -> ( A e. B /\ A e. C ) ) ) <-> ( ( ph -> A e. B ) /\ ( ph -> A e. C ) ) ) |
31 |
25 26 30
|
3bitri |
|- ( A. w ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) <-> ( ( ph -> A e. B ) /\ ( ph -> A e. C ) ) ) |
32 |
31
|
albii |
|- ( A. x A. w ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) <-> A. x ( ( ph -> A e. B ) /\ ( ph -> A e. C ) ) ) |
33 |
|
19.26 |
|- ( A. x ( ( ph -> A e. B ) /\ ( ph -> A e. C ) ) <-> ( A. x ( ph -> A e. B ) /\ A. x ( ph -> A e. C ) ) ) |
34 |
|
19.23v |
|- ( A. x ( ph -> A e. B ) <-> ( E. x ph -> A e. B ) ) |
35 |
34
|
anbi1i |
|- ( ( A. x ( ph -> A e. B ) /\ A. x ( ph -> A e. C ) ) <-> ( ( E. x ph -> A e. B ) /\ A. x ( ph -> A e. C ) ) ) |
36 |
32 33 35
|
3bitri |
|- ( A. x A. w ( w = C -> ( ph -> ( w C_ B -> A e. w ) ) ) <-> ( ( E. x ph -> A e. B ) /\ A. x ( ph -> A e. C ) ) ) |
37 |
16 17 36
|
3bitri |
|- ( A. w ( w e. ~P B -> ( E. x ( w = C /\ ph ) -> A e. w ) ) <-> ( ( E. x ph -> A e. B ) /\ A. x ( ph -> A e. C ) ) ) |
38 |
5 37
|
bitrdi |
|- ( A e. V -> ( A e. |^| { w e. ~P B | E. x ( w = C /\ ph ) } <-> ( ( E. x ph -> A e. B ) /\ A. x ( ph -> A e. C ) ) ) ) |