Description: Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elmapintrab.ex | |
|
elmapintrab.sub | |
||
Assertion | elmapintrab | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapintrab.ex | |
|
2 | elmapintrab.sub | |
|
3 | elintrabg | |
|
4 | df-ral | |
|
5 | 3 4 | bitrdi | |
6 | velpw | |
|
7 | 19.23v | |
|
8 | 7 | bicomi | |
9 | 6 8 | imbi12i | |
10 | 19.21v | |
|
11 | bi2.04 | |
|
12 | impexp | |
|
13 | 11 12 | bitri | |
14 | 13 | albii | |
15 | 9 10 14 | 3bitr2i | |
16 | 15 | albii | |
17 | alcom | |
|
18 | sseq1 | |
|
19 | eleq2 | |
|
20 | 2 | sseli | |
21 | 20 | pm4.71ri | |
22 | 19 21 | bitrdi | |
23 | 18 22 | imbi12d | |
24 | 23 | imbi2d | |
25 | 1 24 | ceqsalv | |
26 | bi2.04 | |
|
27 | pm5.5 | |
|
28 | 2 27 | ax-mp | |
29 | jcab | |
|
30 | 28 29 | bitri | |
31 | 25 26 30 | 3bitri | |
32 | 31 | albii | |
33 | 19.26 | |
|
34 | 19.23v | |
|
35 | 34 | anbi1i | |
36 | 32 33 35 | 3bitri | |
37 | 16 17 36 | 3bitri | |
38 | 5 37 | bitrdi | |