Metamath Proof Explorer


Theorem elmapintrab

Description: Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020)

Ref Expression
Hypotheses elmapintrab.ex C V
elmapintrab.sub C B
Assertion elmapintrab A V A w 𝒫 B | x w = C φ x φ A B x φ A C

Proof

Step Hyp Ref Expression
1 elmapintrab.ex C V
2 elmapintrab.sub C B
3 elintrabg A V A w 𝒫 B | x w = C φ w 𝒫 B x w = C φ A w
4 df-ral w 𝒫 B x w = C φ A w w w 𝒫 B x w = C φ A w
5 3 4 bitrdi A V A w 𝒫 B | x w = C φ w w 𝒫 B x w = C φ A w
6 velpw w 𝒫 B w B
7 19.23v x w = C φ A w x w = C φ A w
8 7 bicomi x w = C φ A w x w = C φ A w
9 6 8 imbi12i w 𝒫 B x w = C φ A w w B x w = C φ A w
10 19.21v x w B w = C φ A w w B x w = C φ A w
11 bi2.04 w B w = C φ A w w = C φ w B A w
12 impexp w = C φ w B A w w = C φ w B A w
13 11 12 bitri w B w = C φ A w w = C φ w B A w
14 13 albii x w B w = C φ A w x w = C φ w B A w
15 9 10 14 3bitr2i w 𝒫 B x w = C φ A w x w = C φ w B A w
16 15 albii w w 𝒫 B x w = C φ A w w x w = C φ w B A w
17 alcom w x w = C φ w B A w x w w = C φ w B A w
18 sseq1 w = C w B C B
19 eleq2 w = C A w A C
20 2 sseli A C A B
21 20 pm4.71ri A C A B A C
22 19 21 bitrdi w = C A w A B A C
23 18 22 imbi12d w = C w B A w C B A B A C
24 23 imbi2d w = C φ w B A w φ C B A B A C
25 1 24 ceqsalv w w = C φ w B A w φ C B A B A C
26 bi2.04 φ C B A B A C C B φ A B A C
27 pm5.5 C B C B φ A B A C φ A B A C
28 2 27 ax-mp C B φ A B A C φ A B A C
29 jcab φ A B A C φ A B φ A C
30 28 29 bitri C B φ A B A C φ A B φ A C
31 25 26 30 3bitri w w = C φ w B A w φ A B φ A C
32 31 albii x w w = C φ w B A w x φ A B φ A C
33 19.26 x φ A B φ A C x φ A B x φ A C
34 19.23v x φ A B x φ A B
35 34 anbi1i x φ A B x φ A C x φ A B x φ A C
36 32 33 35 3bitri x w w = C φ w B A w x φ A B x φ A C
37 16 17 36 3bitri w w 𝒫 B x w = C φ A w x φ A B x φ A C
38 5 37 bitrdi A V A w 𝒫 B | x w = C φ x φ A B x φ A C