Metamath Proof Explorer


Theorem elmapintrab

Description: Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020)

Ref Expression
Hypotheses elmapintrab.ex CV
elmapintrab.sub CB
Assertion elmapintrab AVAw𝒫B|xw=CφxφABxφAC

Proof

Step Hyp Ref Expression
1 elmapintrab.ex CV
2 elmapintrab.sub CB
3 elintrabg AVAw𝒫B|xw=Cφw𝒫Bxw=CφAw
4 df-ral w𝒫Bxw=CφAwww𝒫Bxw=CφAw
5 3 4 bitrdi AVAw𝒫B|xw=Cφww𝒫Bxw=CφAw
6 velpw w𝒫BwB
7 19.23v xw=CφAwxw=CφAw
8 7 bicomi xw=CφAwxw=CφAw
9 6 8 imbi12i w𝒫Bxw=CφAwwBxw=CφAw
10 19.21v xwBw=CφAwwBxw=CφAw
11 bi2.04 wBw=CφAww=CφwBAw
12 impexp w=CφwBAww=CφwBAw
13 11 12 bitri wBw=CφAww=CφwBAw
14 13 albii xwBw=CφAwxw=CφwBAw
15 9 10 14 3bitr2i w𝒫Bxw=CφAwxw=CφwBAw
16 15 albii ww𝒫Bxw=CφAwwxw=CφwBAw
17 alcom wxw=CφwBAwxww=CφwBAw
18 sseq1 w=CwBCB
19 eleq2 w=CAwAC
20 2 sseli ACAB
21 20 pm4.71ri ACABAC
22 19 21 bitrdi w=CAwABAC
23 18 22 imbi12d w=CwBAwCBABAC
24 23 imbi2d w=CφwBAwφCBABAC
25 1 24 ceqsalv ww=CφwBAwφCBABAC
26 bi2.04 φCBABACCBφABAC
27 pm5.5 CBCBφABACφABAC
28 2 27 ax-mp CBφABACφABAC
29 jcab φABACφABφAC
30 28 29 bitri CBφABACφABφAC
31 25 26 30 3bitri ww=CφwBAwφABφAC
32 31 albii xww=CφwBAwxφABφAC
33 19.26 xφABφACxφABxφAC
34 19.23v xφABxφAB
35 34 anbi1i xφABxφACxφABxφAC
36 32 33 35 3bitri xww=CφwBAwxφABxφAC
37 16 17 36 3bitri ww𝒫Bxw=CφAwxφABxφAC
38 5 37 bitrdi AVAw𝒫B|xw=CφxφABxφAC