Metamath Proof Explorer


Theorem 19.26

Description: Theorem 19.26 of Margaris p. 90. Also Theorem *10.22 of WhiteheadRussell p. 147. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 4-Jul-2014)

Ref Expression
Assertion 19.26 ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜑𝜓 ) → 𝜑 )
2 1 alimi ( ∀ 𝑥 ( 𝜑𝜓 ) → ∀ 𝑥 𝜑 )
3 simpr ( ( 𝜑𝜓 ) → 𝜓 )
4 3 alimi ( ∀ 𝑥 ( 𝜑𝜓 ) → ∀ 𝑥 𝜓 )
5 2 4 jca ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) )
6 id ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
7 6 alanimi ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
8 5 7 impbii ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) )