Step |
Hyp |
Ref |
Expression |
1 |
|
intabssd.ex |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
intabssd.sub |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜒 → 𝜓 ) ) |
3 |
|
intabssd.ss |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑦 ) |
4 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴 ) ) |
5 |
4
|
biimpd |
⊢ ( 𝑥 = 𝐴 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝐴 ) ) |
6 |
3
|
sseld |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑦 ) ) |
7 |
5 6
|
sylan9r |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦 ) ) |
8 |
2 7
|
imim12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝜓 → 𝑧 ∈ 𝑥 ) → ( 𝜒 → 𝑧 ∈ 𝑦 ) ) ) |
9 |
1 8
|
spcimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜓 → 𝑧 ∈ 𝑥 ) → ( 𝜒 → 𝑧 ∈ 𝑦 ) ) ) |
10 |
9
|
alrimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜓 → 𝑧 ∈ 𝑥 ) → ∀ 𝑦 ( 𝜒 → 𝑧 ∈ 𝑦 ) ) ) |
11 |
|
vex |
⊢ 𝑧 ∈ V |
12 |
11
|
elintab |
⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ 𝜓 } ↔ ∀ 𝑥 ( 𝜓 → 𝑧 ∈ 𝑥 ) ) |
13 |
11
|
elintab |
⊢ ( 𝑧 ∈ ∩ { 𝑦 ∣ 𝜒 } ↔ ∀ 𝑦 ( 𝜒 → 𝑧 ∈ 𝑦 ) ) |
14 |
10 12 13
|
3imtr4g |
⊢ ( 𝜑 → ( 𝑧 ∈ ∩ { 𝑥 ∣ 𝜓 } → 𝑧 ∈ ∩ { 𝑦 ∣ 𝜒 } ) ) |
15 |
14
|
ssrdv |
⊢ ( 𝜑 → ∩ { 𝑥 ∣ 𝜓 } ⊆ ∩ { 𝑦 ∣ 𝜒 } ) |