Metamath Proof Explorer


Theorem intabssd

Description: When for each element y there is a subset A which may substituted for x such that y satisfying ch implies x satisfies ps then the intersection of all x that satisfy ps is a subclass the intersection of all y that satisfy ch . (Contributed by RP, 17-Oct-2020)

Ref Expression
Hypotheses intabssd.ex ( 𝜑𝐴𝑉 )
intabssd.sub ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜒𝜓 ) )
intabssd.ss ( 𝜑𝐴𝑦 )
Assertion intabssd ( 𝜑 { 𝑥𝜓 } ⊆ { 𝑦𝜒 } )

Proof

Step Hyp Ref Expression
1 intabssd.ex ( 𝜑𝐴𝑉 )
2 intabssd.sub ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜒𝜓 ) )
3 intabssd.ss ( 𝜑𝐴𝑦 )
4 eleq2 ( 𝑥 = 𝐴 → ( 𝑧𝑥𝑧𝐴 ) )
5 4 biimpd ( 𝑥 = 𝐴 → ( 𝑧𝑥𝑧𝐴 ) )
6 3 sseld ( 𝜑 → ( 𝑧𝐴𝑧𝑦 ) )
7 5 6 sylan9r ( ( 𝜑𝑥 = 𝐴 ) → ( 𝑧𝑥𝑧𝑦 ) )
8 2 7 imim12d ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝜓𝑧𝑥 ) → ( 𝜒𝑧𝑦 ) ) )
9 1 8 spcimdv ( 𝜑 → ( ∀ 𝑥 ( 𝜓𝑧𝑥 ) → ( 𝜒𝑧𝑦 ) ) )
10 9 alrimdv ( 𝜑 → ( ∀ 𝑥 ( 𝜓𝑧𝑥 ) → ∀ 𝑦 ( 𝜒𝑧𝑦 ) ) )
11 vex 𝑧 ∈ V
12 11 elintab ( 𝑧 { 𝑥𝜓 } ↔ ∀ 𝑥 ( 𝜓𝑧𝑥 ) )
13 11 elintab ( 𝑧 { 𝑦𝜒 } ↔ ∀ 𝑦 ( 𝜒𝑧𝑦 ) )
14 10 12 13 3imtr4g ( 𝜑 → ( 𝑧 { 𝑥𝜓 } → 𝑧 { 𝑦𝜒 } ) )
15 14 ssrdv ( 𝜑 { 𝑥𝜓 } ⊆ { 𝑦𝜒 } )