Metamath Proof Explorer


Theorem intabssd

Description: When for each element y there is a subset A which may substituted for x such that y satisfying ch implies x satisfies ps then the intersection of all x that satisfy ps is a subclass the intersection of all y that satisfy ch . (Contributed by RP, 17-Oct-2020)

Ref Expression
Hypotheses intabssd.ex
|- ( ph -> A e. V )
intabssd.sub
|- ( ( ph /\ x = A ) -> ( ch -> ps ) )
intabssd.ss
|- ( ph -> A C_ y )
Assertion intabssd
|- ( ph -> |^| { x | ps } C_ |^| { y | ch } )

Proof

Step Hyp Ref Expression
1 intabssd.ex
 |-  ( ph -> A e. V )
2 intabssd.sub
 |-  ( ( ph /\ x = A ) -> ( ch -> ps ) )
3 intabssd.ss
 |-  ( ph -> A C_ y )
4 eleq2
 |-  ( x = A -> ( z e. x <-> z e. A ) )
5 4 biimpd
 |-  ( x = A -> ( z e. x -> z e. A ) )
6 3 sseld
 |-  ( ph -> ( z e. A -> z e. y ) )
7 5 6 sylan9r
 |-  ( ( ph /\ x = A ) -> ( z e. x -> z e. y ) )
8 2 7 imim12d
 |-  ( ( ph /\ x = A ) -> ( ( ps -> z e. x ) -> ( ch -> z e. y ) ) )
9 1 8 spcimdv
 |-  ( ph -> ( A. x ( ps -> z e. x ) -> ( ch -> z e. y ) ) )
10 9 alrimdv
 |-  ( ph -> ( A. x ( ps -> z e. x ) -> A. y ( ch -> z e. y ) ) )
11 vex
 |-  z e. _V
12 11 elintab
 |-  ( z e. |^| { x | ps } <-> A. x ( ps -> z e. x ) )
13 11 elintab
 |-  ( z e. |^| { y | ch } <-> A. y ( ch -> z e. y ) )
14 10 12 13 3imtr4g
 |-  ( ph -> ( z e. |^| { x | ps } -> z e. |^| { y | ch } ) )
15 14 ssrdv
 |-  ( ph -> |^| { x | ps } C_ |^| { y | ch } )