| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intabssd.ex |
|- ( ph -> A e. V ) |
| 2 |
|
intabssd.sub |
|- ( ( ph /\ x = A ) -> ( ch -> ps ) ) |
| 3 |
|
intabssd.ss |
|- ( ph -> A C_ y ) |
| 4 |
|
eleq2 |
|- ( x = A -> ( z e. x <-> z e. A ) ) |
| 5 |
4
|
biimpd |
|- ( x = A -> ( z e. x -> z e. A ) ) |
| 6 |
3
|
sseld |
|- ( ph -> ( z e. A -> z e. y ) ) |
| 7 |
5 6
|
sylan9r |
|- ( ( ph /\ x = A ) -> ( z e. x -> z e. y ) ) |
| 8 |
2 7
|
imim12d |
|- ( ( ph /\ x = A ) -> ( ( ps -> z e. x ) -> ( ch -> z e. y ) ) ) |
| 9 |
1 8
|
spcimdv |
|- ( ph -> ( A. x ( ps -> z e. x ) -> ( ch -> z e. y ) ) ) |
| 10 |
9
|
alrimdv |
|- ( ph -> ( A. x ( ps -> z e. x ) -> A. y ( ch -> z e. y ) ) ) |
| 11 |
|
vex |
|- z e. _V |
| 12 |
11
|
elintab |
|- ( z e. |^| { x | ps } <-> A. x ( ps -> z e. x ) ) |
| 13 |
11
|
elintab |
|- ( z e. |^| { y | ch } <-> A. y ( ch -> z e. y ) ) |
| 14 |
10 12 13
|
3imtr4g |
|- ( ph -> ( z e. |^| { x | ps } -> z e. |^| { y | ch } ) ) |
| 15 |
14
|
ssrdv |
|- ( ph -> |^| { x | ps } C_ |^| { y | ch } ) |