Metamath Proof Explorer
Theorem eu0
Description: There is only one empty set. (Contributed by RP, 1-Oct-2023)
|
|
Ref |
Expression |
|
Assertion |
eu0 |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃! 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
2 |
1
|
ax-gen |
⊢ ∀ 𝑥 ¬ 𝑥 ∈ ∅ |
3 |
|
ax-nul |
⊢ ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 |
4 |
|
nulmo |
⊢ ∃* 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 |
5 |
|
df-eu |
⊢ ( ∃! 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ( ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ∧ ∃* 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) ) |
6 |
3 4 5
|
mpbir2an |
⊢ ∃! 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 |
7 |
2 6
|
pm3.2i |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃! 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) |