Metamath Proof Explorer


Theorem eu0

Description: There is only one empty set. (Contributed by RP, 1-Oct-2023)

Ref Expression
Assertion eu0 ( ∀ 𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃! 𝑥𝑦 ¬ 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 noel ¬ 𝑥 ∈ ∅
2 1 ax-gen 𝑥 ¬ 𝑥 ∈ ∅
3 ax-nul 𝑥𝑦 ¬ 𝑦𝑥
4 nulmo ∃* 𝑥𝑦 ¬ 𝑦𝑥
5 df-eu ( ∃! 𝑥𝑦 ¬ 𝑦𝑥 ↔ ( ∃ 𝑥𝑦 ¬ 𝑦𝑥 ∧ ∃* 𝑥𝑦 ¬ 𝑦𝑥 ) )
6 3 4 5 mpbir2an ∃! 𝑥𝑦 ¬ 𝑦𝑥
7 2 6 pm3.2i ( ∀ 𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃! 𝑥𝑦 ¬ 𝑦𝑥 )