Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inundif | |- ( ( A i^i B ) u. ( A \ B ) ) = A  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )  | 
						|
| 2 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) )  | 
						|
| 3 | 1 2 | orbi12i | |- ( ( x e. ( A i^i B ) \/ x e. ( A \ B ) ) <-> ( ( x e. A /\ x e. B ) \/ ( x e. A /\ -. x e. B ) ) )  | 
						
| 4 | pm4.42 | |- ( x e. A <-> ( ( x e. A /\ x e. B ) \/ ( x e. A /\ -. x e. B ) ) )  | 
						|
| 5 | 3 4 | bitr4i | |- ( ( x e. ( A i^i B ) \/ x e. ( A \ B ) ) <-> x e. A )  | 
						
| 6 | 5 | uneqri | |- ( ( A i^i B ) u. ( A \ B ) ) = A  |