| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvresid |
⊢ ◡ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) = ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) |
| 2 |
|
cnvnonrel |
⊢ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ∅ |
| 3 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
| 4 |
2 3
|
eqtr4i |
⊢ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ◡ ∅ |
| 5 |
4
|
dmeqi |
⊢ dom ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) = dom ◡ ∅ |
| 6 |
|
df-rn |
⊢ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) = dom ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) |
| 7 |
|
df-rn |
⊢ ran ∅ = dom ◡ ∅ |
| 8 |
5 6 7
|
3eqtr4i |
⊢ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ran ∅ |
| 9 |
|
0ss |
⊢ ∅ ⊆ ◡ 𝑦 |
| 10 |
9
|
rnssi |
⊢ ran ∅ ⊆ ran ◡ 𝑦 |
| 11 |
8 10
|
eqsstri |
⊢ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ran ◡ 𝑦 |
| 12 |
|
ssequn2 |
⊢ ( ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ran ◡ 𝑦 ↔ ( ran ◡ 𝑦 ∪ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ran ◡ 𝑦 ) |
| 13 |
11 12
|
mpbi |
⊢ ( ran ◡ 𝑦 ∪ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ran ◡ 𝑦 |
| 14 |
|
rnun |
⊢ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ( ran ◡ 𝑦 ∪ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
| 15 |
|
dfdm4 |
⊢ dom 𝑦 = ran ◡ 𝑦 |
| 16 |
13 14 15
|
3eqtr4ri |
⊢ dom 𝑦 = ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
| 17 |
4
|
rneqi |
⊢ ran ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ran ◡ ∅ |
| 18 |
|
dfdm4 |
⊢ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ran ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) |
| 19 |
|
dfdm4 |
⊢ dom ∅ = ran ◡ ∅ |
| 20 |
17 18 19
|
3eqtr4i |
⊢ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) = dom ∅ |
| 21 |
|
dmss |
⊢ ( ∅ ⊆ ◡ 𝑦 → dom ∅ ⊆ dom ◡ 𝑦 ) |
| 22 |
9 21
|
ax-mp |
⊢ dom ∅ ⊆ dom ◡ 𝑦 |
| 23 |
20 22
|
eqsstri |
⊢ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ dom ◡ 𝑦 |
| 24 |
|
ssequn2 |
⊢ ( dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ dom ◡ 𝑦 ↔ ( dom ◡ 𝑦 ∪ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = dom ◡ 𝑦 ) |
| 25 |
23 24
|
mpbi |
⊢ ( dom ◡ 𝑦 ∪ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = dom ◡ 𝑦 |
| 26 |
|
dmun |
⊢ dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ( dom ◡ 𝑦 ∪ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
| 27 |
|
df-rn |
⊢ ran 𝑦 = dom ◡ 𝑦 |
| 28 |
25 26 27
|
3eqtr4ri |
⊢ ran 𝑦 = dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
| 29 |
16 28
|
uneq12i |
⊢ ( dom 𝑦 ∪ ran 𝑦 ) = ( ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
| 30 |
29
|
equncomi |
⊢ ( dom 𝑦 ∪ ran 𝑦 ) = ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
| 31 |
30
|
reseq2i |
⊢ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) = ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
| 32 |
1 31
|
eqtr2i |
⊢ ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) = ◡ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) |
| 33 |
|
cnvss |
⊢ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 → ◡ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ ◡ 𝑦 ) |
| 34 |
32 33
|
eqsstrid |
⊢ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 → ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) ⊆ ◡ 𝑦 ) |
| 35 |
|
ssun1 |
⊢ ◡ 𝑦 ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
| 36 |
34 35
|
sstrdi |
⊢ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 → ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
| 37 |
|
dmeq |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → dom 𝑥 = dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
| 38 |
|
rneq |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ran 𝑥 = ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
| 39 |
37 38
|
uneq12d |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( dom 𝑥 ∪ ran 𝑥 ) = ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
| 40 |
39
|
reseq2d |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) ) |
| 41 |
|
id |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
| 42 |
40 41
|
sseq12d |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ↔ ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
| 43 |
36 42
|
imbitrrid |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) ) |
| 45 |
|
cnvresid |
⊢ ◡ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) |
| 46 |
|
dfdm4 |
⊢ dom 𝑥 = ran ◡ 𝑥 |
| 47 |
|
df-rn |
⊢ ran 𝑥 = dom ◡ 𝑥 |
| 48 |
46 47
|
uneq12i |
⊢ ( dom 𝑥 ∪ ran 𝑥 ) = ( ran ◡ 𝑥 ∪ dom ◡ 𝑥 ) |
| 49 |
48
|
equncomi |
⊢ ( dom 𝑥 ∪ ran 𝑥 ) = ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) |
| 50 |
49
|
reseq2i |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) |
| 51 |
45 50
|
eqtr2i |
⊢ ( I ↾ ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) = ◡ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) |
| 52 |
|
cnvss |
⊢ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 → ◡ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ◡ 𝑥 ) |
| 53 |
51 52
|
eqsstrid |
⊢ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 → ( I ↾ ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) ⊆ ◡ 𝑥 ) |
| 54 |
|
dmeq |
⊢ ( 𝑦 = ◡ 𝑥 → dom 𝑦 = dom ◡ 𝑥 ) |
| 55 |
|
rneq |
⊢ ( 𝑦 = ◡ 𝑥 → ran 𝑦 = ran ◡ 𝑥 ) |
| 56 |
54 55
|
uneq12d |
⊢ ( 𝑦 = ◡ 𝑥 → ( dom 𝑦 ∪ ran 𝑦 ) = ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) |
| 57 |
56
|
reseq2d |
⊢ ( 𝑦 = ◡ 𝑥 → ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) = ( I ↾ ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) ) |
| 58 |
|
id |
⊢ ( 𝑦 = ◡ 𝑥 → 𝑦 = ◡ 𝑥 ) |
| 59 |
57 58
|
sseq12d |
⊢ ( 𝑦 = ◡ 𝑥 → ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ↔ ( I ↾ ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) ⊆ ◡ 𝑥 ) ) |
| 60 |
53 59
|
imbitrrid |
⊢ ( 𝑦 = ◡ 𝑥 → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 → ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = ◡ 𝑥 ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 → ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) |
| 62 |
|
dmeq |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → dom 𝑥 = dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
| 63 |
|
rneq |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → ran 𝑥 = ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
| 64 |
62 63
|
uneq12d |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → ( dom 𝑥 ∪ ran 𝑥 ) = ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) |
| 65 |
64
|
reseq2d |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ) |
| 66 |
|
id |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
| 67 |
65 66
|
sseq12d |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ↔ ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) |
| 68 |
|
ssun1 |
⊢ 𝑋 ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
| 69 |
68
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
| 70 |
|
dmexg |
⊢ ( 𝑋 ∈ 𝑉 → dom 𝑋 ∈ V ) |
| 71 |
|
rnexg |
⊢ ( 𝑋 ∈ 𝑉 → ran 𝑋 ∈ V ) |
| 72 |
70 71
|
unexd |
⊢ ( 𝑋 ∈ 𝑉 → ( dom 𝑋 ∪ ran 𝑋 ) ∈ V ) |
| 73 |
72
|
resiexd |
⊢ ( 𝑋 ∈ 𝑉 → ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ∈ V ) |
| 74 |
|
unexg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ∈ V ) → ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∈ V ) |
| 75 |
73 74
|
mpdan |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∈ V ) |
| 76 |
|
dmun |
⊢ dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) = ( dom 𝑋 ∪ dom ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
| 77 |
|
ssun1 |
⊢ dom 𝑋 ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
| 78 |
|
resdmss |
⊢ dom ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
| 79 |
77 78
|
unssi |
⊢ ( dom 𝑋 ∪ dom ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
| 80 |
76 79
|
eqsstri |
⊢ dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
| 81 |
|
rnun |
⊢ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) = ( ran 𝑋 ∪ ran ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
| 82 |
|
ssun2 |
⊢ ran 𝑋 ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
| 83 |
|
rnresi |
⊢ ran ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) = ( dom 𝑋 ∪ ran 𝑋 ) |
| 84 |
83
|
eqimssi |
⊢ ran ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
| 85 |
82 84
|
unssi |
⊢ ( ran 𝑋 ∪ ran ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
| 86 |
81 85
|
eqsstri |
⊢ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
| 87 |
80 86
|
pm3.2i |
⊢ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ∧ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ) |
| 88 |
|
unss |
⊢ ( ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ∧ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ) ↔ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ) |
| 89 |
|
ssres2 |
⊢ ( ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) → ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
| 90 |
88 89
|
sylbi |
⊢ ( ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ∧ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ) → ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
| 91 |
|
ssun4 |
⊢ ( ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) → ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
| 92 |
87 90 91
|
mp2b |
⊢ ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
| 93 |
92
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
| 94 |
44 61 67 69 75 93
|
clcnvlem |
⊢ ( 𝑋 ∈ 𝑉 → ◡ ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) } = ∩ { 𝑦 ∣ ( ◡ 𝑋 ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) } ) |