Step |
Hyp |
Ref |
Expression |
1 |
|
cnvresid |
⊢ ◡ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) = ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) |
2 |
|
cnvnonrel |
⊢ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ∅ |
3 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
4 |
2 3
|
eqtr4i |
⊢ ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ◡ ∅ |
5 |
4
|
dmeqi |
⊢ dom ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) = dom ◡ ∅ |
6 |
|
df-rn |
⊢ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) = dom ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) |
7 |
|
df-rn |
⊢ ran ∅ = dom ◡ ∅ |
8 |
5 6 7
|
3eqtr4i |
⊢ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ran ∅ |
9 |
|
0ss |
⊢ ∅ ⊆ ◡ 𝑦 |
10 |
9
|
rnssi |
⊢ ran ∅ ⊆ ran ◡ 𝑦 |
11 |
8 10
|
eqsstri |
⊢ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ran ◡ 𝑦 |
12 |
|
ssequn2 |
⊢ ( ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ ran ◡ 𝑦 ↔ ( ran ◡ 𝑦 ∪ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ran ◡ 𝑦 ) |
13 |
11 12
|
mpbi |
⊢ ( ran ◡ 𝑦 ∪ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ran ◡ 𝑦 |
14 |
|
rnun |
⊢ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ( ran ◡ 𝑦 ∪ ran ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
15 |
|
dfdm4 |
⊢ dom 𝑦 = ran ◡ 𝑦 |
16 |
13 14 15
|
3eqtr4ri |
⊢ dom 𝑦 = ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
17 |
4
|
rneqi |
⊢ ran ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ran ◡ ∅ |
18 |
|
dfdm4 |
⊢ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) = ran ◡ ( 𝑋 ∖ ◡ ◡ 𝑋 ) |
19 |
|
dfdm4 |
⊢ dom ∅ = ran ◡ ∅ |
20 |
17 18 19
|
3eqtr4i |
⊢ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) = dom ∅ |
21 |
|
dmss |
⊢ ( ∅ ⊆ ◡ 𝑦 → dom ∅ ⊆ dom ◡ 𝑦 ) |
22 |
9 21
|
ax-mp |
⊢ dom ∅ ⊆ dom ◡ 𝑦 |
23 |
20 22
|
eqsstri |
⊢ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ dom ◡ 𝑦 |
24 |
|
ssequn2 |
⊢ ( dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) ⊆ dom ◡ 𝑦 ↔ ( dom ◡ 𝑦 ∪ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = dom ◡ 𝑦 ) |
25 |
23 24
|
mpbi |
⊢ ( dom ◡ 𝑦 ∪ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = dom ◡ 𝑦 |
26 |
|
dmun |
⊢ dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) = ( dom ◡ 𝑦 ∪ dom ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
27 |
|
df-rn |
⊢ ran 𝑦 = dom ◡ 𝑦 |
28 |
25 26 27
|
3eqtr4ri |
⊢ ran 𝑦 = dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
29 |
16 28
|
uneq12i |
⊢ ( dom 𝑦 ∪ ran 𝑦 ) = ( ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
30 |
29
|
equncomi |
⊢ ( dom 𝑦 ∪ ran 𝑦 ) = ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
31 |
30
|
reseq2i |
⊢ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) = ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
32 |
1 31
|
eqtr2i |
⊢ ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) = ◡ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) |
33 |
|
cnvss |
⊢ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 → ◡ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ ◡ 𝑦 ) |
34 |
32 33
|
eqsstrid |
⊢ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 → ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) ⊆ ◡ 𝑦 ) |
35 |
|
ssun1 |
⊢ ◡ 𝑦 ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) |
36 |
34 35
|
sstrdi |
⊢ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 → ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
37 |
|
dmeq |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → dom 𝑥 = dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
38 |
|
rneq |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ran 𝑥 = ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
39 |
37 38
|
uneq12d |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( dom 𝑥 ∪ ran 𝑥 ) = ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
40 |
39
|
reseq2d |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) ) |
41 |
|
id |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) |
42 |
40 41
|
sseq12d |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ↔ ( I ↾ ( dom ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ∪ ran ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) ⊆ ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) ) |
43 |
36 42
|
syl5ibr |
⊢ ( 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) → ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑥 = ( ◡ 𝑦 ∪ ( 𝑋 ∖ ◡ ◡ 𝑋 ) ) ) → ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) ) |
45 |
|
cnvresid |
⊢ ◡ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) |
46 |
|
dfdm4 |
⊢ dom 𝑥 = ran ◡ 𝑥 |
47 |
|
df-rn |
⊢ ran 𝑥 = dom ◡ 𝑥 |
48 |
46 47
|
uneq12i |
⊢ ( dom 𝑥 ∪ ran 𝑥 ) = ( ran ◡ 𝑥 ∪ dom ◡ 𝑥 ) |
49 |
48
|
equncomi |
⊢ ( dom 𝑥 ∪ ran 𝑥 ) = ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) |
50 |
49
|
reseq2i |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) |
51 |
45 50
|
eqtr2i |
⊢ ( I ↾ ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) = ◡ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) |
52 |
|
cnvss |
⊢ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 → ◡ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ◡ 𝑥 ) |
53 |
51 52
|
eqsstrid |
⊢ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 → ( I ↾ ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) ⊆ ◡ 𝑥 ) |
54 |
|
dmeq |
⊢ ( 𝑦 = ◡ 𝑥 → dom 𝑦 = dom ◡ 𝑥 ) |
55 |
|
rneq |
⊢ ( 𝑦 = ◡ 𝑥 → ran 𝑦 = ran ◡ 𝑥 ) |
56 |
54 55
|
uneq12d |
⊢ ( 𝑦 = ◡ 𝑥 → ( dom 𝑦 ∪ ran 𝑦 ) = ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) |
57 |
56
|
reseq2d |
⊢ ( 𝑦 = ◡ 𝑥 → ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) = ( I ↾ ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) ) |
58 |
|
id |
⊢ ( 𝑦 = ◡ 𝑥 → 𝑦 = ◡ 𝑥 ) |
59 |
57 58
|
sseq12d |
⊢ ( 𝑦 = ◡ 𝑥 → ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ↔ ( I ↾ ( dom ◡ 𝑥 ∪ ran ◡ 𝑥 ) ) ⊆ ◡ 𝑥 ) ) |
60 |
53 59
|
syl5ibr |
⊢ ( 𝑦 = ◡ 𝑥 → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 → ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) |
61 |
60
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = ◡ 𝑥 ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 → ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) |
62 |
|
dmeq |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → dom 𝑥 = dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
63 |
|
rneq |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → ran 𝑥 = ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
64 |
62 63
|
uneq12d |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → ( dom 𝑥 ∪ ran 𝑥 ) = ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) |
65 |
64
|
reseq2d |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ) |
66 |
|
id |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
67 |
65 66
|
sseq12d |
⊢ ( 𝑥 = ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ↔ ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) |
68 |
|
ssun1 |
⊢ 𝑋 ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
69 |
68
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
70 |
|
dmexg |
⊢ ( 𝑋 ∈ 𝑉 → dom 𝑋 ∈ V ) |
71 |
|
rnexg |
⊢ ( 𝑋 ∈ 𝑉 → ran 𝑋 ∈ V ) |
72 |
|
unexg |
⊢ ( ( dom 𝑋 ∈ V ∧ ran 𝑋 ∈ V ) → ( dom 𝑋 ∪ ran 𝑋 ) ∈ V ) |
73 |
70 71 72
|
syl2anc |
⊢ ( 𝑋 ∈ 𝑉 → ( dom 𝑋 ∪ ran 𝑋 ) ∈ V ) |
74 |
73
|
resiexd |
⊢ ( 𝑋 ∈ 𝑉 → ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ∈ V ) |
75 |
|
unexg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ∈ V ) → ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∈ V ) |
76 |
74 75
|
mpdan |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∈ V ) |
77 |
|
dmun |
⊢ dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) = ( dom 𝑋 ∪ dom ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
78 |
|
ssun1 |
⊢ dom 𝑋 ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
79 |
|
dmresi |
⊢ dom ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) = ( dom 𝑋 ∪ ran 𝑋 ) |
80 |
79
|
eqimssi |
⊢ dom ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
81 |
78 80
|
unssi |
⊢ ( dom 𝑋 ∪ dom ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
82 |
77 81
|
eqsstri |
⊢ dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
83 |
|
rnun |
⊢ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) = ( ran 𝑋 ∪ ran ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
84 |
|
ssun2 |
⊢ ran 𝑋 ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
85 |
|
rnresi |
⊢ ran ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) = ( dom 𝑋 ∪ ran 𝑋 ) |
86 |
85
|
eqimssi |
⊢ ran ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
87 |
84 86
|
unssi |
⊢ ( ran 𝑋 ∪ ran ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
88 |
83 87
|
eqsstri |
⊢ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) |
89 |
82 88
|
pm3.2i |
⊢ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ∧ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ) |
90 |
|
unss |
⊢ ( ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ∧ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ) ↔ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ) |
91 |
|
ssres2 |
⊢ ( ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) → ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
92 |
90 91
|
sylbi |
⊢ ( ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ∧ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ⊆ ( dom 𝑋 ∪ ran 𝑋 ) ) → ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
93 |
|
ssun4 |
⊢ ( ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) → ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
94 |
89 92 93
|
mp2b |
⊢ ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) |
95 |
94
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( I ↾ ( dom ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ∪ ran ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) ) ⊆ ( 𝑋 ∪ ( I ↾ ( dom 𝑋 ∪ ran 𝑋 ) ) ) ) |
96 |
44 61 67 69 76 95
|
clcnvlem |
⊢ ( 𝑋 ∈ 𝑉 → ◡ ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) } = ∩ { 𝑦 ∣ ( ◡ 𝑋 ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) } ) |