| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvco |
|- `' ( y o. y ) = ( `' y o. `' y ) |
| 2 |
|
cnvss |
|- ( ( y o. y ) C_ y -> `' ( y o. y ) C_ `' y ) |
| 3 |
1 2
|
eqsstrrid |
|- ( ( y o. y ) C_ y -> ( `' y o. `' y ) C_ `' y ) |
| 4 |
|
coundir |
|- ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) = ( ( `' y o. ( `' y u. ( X \ `' `' X ) ) ) u. ( ( X \ `' `' X ) o. ( `' y u. ( X \ `' `' X ) ) ) ) |
| 5 |
|
coundi |
|- ( `' y o. ( `' y u. ( X \ `' `' X ) ) ) = ( ( `' y o. `' y ) u. ( `' y o. ( X \ `' `' X ) ) ) |
| 6 |
|
ssid |
|- ( `' y o. `' y ) C_ ( `' y o. `' y ) |
| 7 |
|
cononrel2 |
|- ( `' y o. ( X \ `' `' X ) ) = (/) |
| 8 |
|
0ss |
|- (/) C_ ( `' y o. `' y ) |
| 9 |
7 8
|
eqsstri |
|- ( `' y o. ( X \ `' `' X ) ) C_ ( `' y o. `' y ) |
| 10 |
6 9
|
unssi |
|- ( ( `' y o. `' y ) u. ( `' y o. ( X \ `' `' X ) ) ) C_ ( `' y o. `' y ) |
| 11 |
5 10
|
eqsstri |
|- ( `' y o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y o. `' y ) |
| 12 |
|
cononrel1 |
|- ( ( X \ `' `' X ) o. ( `' y u. ( X \ `' `' X ) ) ) = (/) |
| 13 |
12 8
|
eqsstri |
|- ( ( X \ `' `' X ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y o. `' y ) |
| 14 |
11 13
|
unssi |
|- ( ( `' y o. ( `' y u. ( X \ `' `' X ) ) ) u. ( ( X \ `' `' X ) o. ( `' y u. ( X \ `' `' X ) ) ) ) C_ ( `' y o. `' y ) |
| 15 |
4 14
|
eqsstri |
|- ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y o. `' y ) |
| 16 |
|
id |
|- ( ( `' y o. `' y ) C_ `' y -> ( `' y o. `' y ) C_ `' y ) |
| 17 |
15 16
|
sstrid |
|- ( ( `' y o. `' y ) C_ `' y -> ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ `' y ) |
| 18 |
|
ssun3 |
|- ( ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ `' y -> ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) |
| 19 |
3 17 18
|
3syl |
|- ( ( y o. y ) C_ y -> ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) |
| 20 |
|
id |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> x = ( `' y u. ( X \ `' `' X ) ) ) |
| 21 |
20 20
|
coeq12d |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( x o. x ) = ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) ) |
| 22 |
21 20
|
sseq12d |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( ( x o. x ) C_ x <-> ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) ) |
| 23 |
19 22
|
imbitrrid |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( ( y o. y ) C_ y -> ( x o. x ) C_ x ) ) |
| 24 |
23
|
adantl |
|- ( ( X e. V /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ( y o. y ) C_ y -> ( x o. x ) C_ x ) ) |
| 25 |
|
cnvco |
|- `' ( x o. x ) = ( `' x o. `' x ) |
| 26 |
|
cnvss |
|- ( ( x o. x ) C_ x -> `' ( x o. x ) C_ `' x ) |
| 27 |
25 26
|
eqsstrrid |
|- ( ( x o. x ) C_ x -> ( `' x o. `' x ) C_ `' x ) |
| 28 |
|
id |
|- ( y = `' x -> y = `' x ) |
| 29 |
28 28
|
coeq12d |
|- ( y = `' x -> ( y o. y ) = ( `' x o. `' x ) ) |
| 30 |
29 28
|
sseq12d |
|- ( y = `' x -> ( ( y o. y ) C_ y <-> ( `' x o. `' x ) C_ `' x ) ) |
| 31 |
27 30
|
imbitrrid |
|- ( y = `' x -> ( ( x o. x ) C_ x -> ( y o. y ) C_ y ) ) |
| 32 |
31
|
adantl |
|- ( ( X e. V /\ y = `' x ) -> ( ( x o. x ) C_ x -> ( y o. y ) C_ y ) ) |
| 33 |
|
id |
|- ( x = ( X u. ( dom X X. ran X ) ) -> x = ( X u. ( dom X X. ran X ) ) ) |
| 34 |
33 33
|
coeq12d |
|- ( x = ( X u. ( dom X X. ran X ) ) -> ( x o. x ) = ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) ) |
| 35 |
34 33
|
sseq12d |
|- ( x = ( X u. ( dom X X. ran X ) ) -> ( ( x o. x ) C_ x <-> ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) C_ ( X u. ( dom X X. ran X ) ) ) ) |
| 36 |
|
ssun1 |
|- X C_ ( X u. ( dom X X. ran X ) ) |
| 37 |
36
|
a1i |
|- ( X e. V -> X C_ ( X u. ( dom X X. ran X ) ) ) |
| 38 |
|
trclexlem |
|- ( X e. V -> ( X u. ( dom X X. ran X ) ) e. _V ) |
| 39 |
|
coundir |
|- ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) = ( ( X o. ( X u. ( dom X X. ran X ) ) ) u. ( ( dom X X. ran X ) o. ( X u. ( dom X X. ran X ) ) ) ) |
| 40 |
|
coundi |
|- ( X o. ( X u. ( dom X X. ran X ) ) ) = ( ( X o. X ) u. ( X o. ( dom X X. ran X ) ) ) |
| 41 |
|
cossxp |
|- ( X o. X ) C_ ( dom X X. ran X ) |
| 42 |
|
cossxp |
|- ( X o. ( dom X X. ran X ) ) C_ ( dom ( dom X X. ran X ) X. ran X ) |
| 43 |
|
dmxpss |
|- dom ( dom X X. ran X ) C_ dom X |
| 44 |
|
xpss1 |
|- ( dom ( dom X X. ran X ) C_ dom X -> ( dom ( dom X X. ran X ) X. ran X ) C_ ( dom X X. ran X ) ) |
| 45 |
43 44
|
ax-mp |
|- ( dom ( dom X X. ran X ) X. ran X ) C_ ( dom X X. ran X ) |
| 46 |
42 45
|
sstri |
|- ( X o. ( dom X X. ran X ) ) C_ ( dom X X. ran X ) |
| 47 |
41 46
|
unssi |
|- ( ( X o. X ) u. ( X o. ( dom X X. ran X ) ) ) C_ ( dom X X. ran X ) |
| 48 |
40 47
|
eqsstri |
|- ( X o. ( X u. ( dom X X. ran X ) ) ) C_ ( dom X X. ran X ) |
| 49 |
|
coundi |
|- ( ( dom X X. ran X ) o. ( X u. ( dom X X. ran X ) ) ) = ( ( ( dom X X. ran X ) o. X ) u. ( ( dom X X. ran X ) o. ( dom X X. ran X ) ) ) |
| 50 |
|
cossxp |
|- ( ( dom X X. ran X ) o. X ) C_ ( dom X X. ran ( dom X X. ran X ) ) |
| 51 |
|
rnxpss |
|- ran ( dom X X. ran X ) C_ ran X |
| 52 |
|
xpss2 |
|- ( ran ( dom X X. ran X ) C_ ran X -> ( dom X X. ran ( dom X X. ran X ) ) C_ ( dom X X. ran X ) ) |
| 53 |
51 52
|
ax-mp |
|- ( dom X X. ran ( dom X X. ran X ) ) C_ ( dom X X. ran X ) |
| 54 |
50 53
|
sstri |
|- ( ( dom X X. ran X ) o. X ) C_ ( dom X X. ran X ) |
| 55 |
|
xptrrel |
|- ( ( dom X X. ran X ) o. ( dom X X. ran X ) ) C_ ( dom X X. ran X ) |
| 56 |
54 55
|
unssi |
|- ( ( ( dom X X. ran X ) o. X ) u. ( ( dom X X. ran X ) o. ( dom X X. ran X ) ) ) C_ ( dom X X. ran X ) |
| 57 |
49 56
|
eqsstri |
|- ( ( dom X X. ran X ) o. ( X u. ( dom X X. ran X ) ) ) C_ ( dom X X. ran X ) |
| 58 |
48 57
|
unssi |
|- ( ( X o. ( X u. ( dom X X. ran X ) ) ) u. ( ( dom X X. ran X ) o. ( X u. ( dom X X. ran X ) ) ) ) C_ ( dom X X. ran X ) |
| 59 |
39 58
|
eqsstri |
|- ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) C_ ( dom X X. ran X ) |
| 60 |
|
ssun2 |
|- ( dom X X. ran X ) C_ ( X u. ( dom X X. ran X ) ) |
| 61 |
59 60
|
sstri |
|- ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) C_ ( X u. ( dom X X. ran X ) ) |
| 62 |
61
|
a1i |
|- ( X e. V -> ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) C_ ( X u. ( dom X X. ran X ) ) ) |
| 63 |
24 32 35 37 38 62
|
clcnvlem |
|- ( X e. V -> `' |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } = |^| { y | ( `' X C_ y /\ ( y o. y ) C_ y ) } ) |