Step |
Hyp |
Ref |
Expression |
1 |
|
cnvco |
|- `' ( y o. y ) = ( `' y o. `' y ) |
2 |
|
cnvss |
|- ( ( y o. y ) C_ y -> `' ( y o. y ) C_ `' y ) |
3 |
1 2
|
eqsstrrid |
|- ( ( y o. y ) C_ y -> ( `' y o. `' y ) C_ `' y ) |
4 |
|
coundir |
|- ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) = ( ( `' y o. ( `' y u. ( X \ `' `' X ) ) ) u. ( ( X \ `' `' X ) o. ( `' y u. ( X \ `' `' X ) ) ) ) |
5 |
|
coundi |
|- ( `' y o. ( `' y u. ( X \ `' `' X ) ) ) = ( ( `' y o. `' y ) u. ( `' y o. ( X \ `' `' X ) ) ) |
6 |
|
ssid |
|- ( `' y o. `' y ) C_ ( `' y o. `' y ) |
7 |
|
cononrel2 |
|- ( `' y o. ( X \ `' `' X ) ) = (/) |
8 |
|
0ss |
|- (/) C_ ( `' y o. `' y ) |
9 |
7 8
|
eqsstri |
|- ( `' y o. ( X \ `' `' X ) ) C_ ( `' y o. `' y ) |
10 |
6 9
|
unssi |
|- ( ( `' y o. `' y ) u. ( `' y o. ( X \ `' `' X ) ) ) C_ ( `' y o. `' y ) |
11 |
5 10
|
eqsstri |
|- ( `' y o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y o. `' y ) |
12 |
|
cononrel1 |
|- ( ( X \ `' `' X ) o. ( `' y u. ( X \ `' `' X ) ) ) = (/) |
13 |
12 8
|
eqsstri |
|- ( ( X \ `' `' X ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y o. `' y ) |
14 |
11 13
|
unssi |
|- ( ( `' y o. ( `' y u. ( X \ `' `' X ) ) ) u. ( ( X \ `' `' X ) o. ( `' y u. ( X \ `' `' X ) ) ) ) C_ ( `' y o. `' y ) |
15 |
4 14
|
eqsstri |
|- ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y o. `' y ) |
16 |
|
id |
|- ( ( `' y o. `' y ) C_ `' y -> ( `' y o. `' y ) C_ `' y ) |
17 |
15 16
|
sstrid |
|- ( ( `' y o. `' y ) C_ `' y -> ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ `' y ) |
18 |
|
ssun3 |
|- ( ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ `' y -> ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) |
19 |
3 17 18
|
3syl |
|- ( ( y o. y ) C_ y -> ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) |
20 |
|
id |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> x = ( `' y u. ( X \ `' `' X ) ) ) |
21 |
20 20
|
coeq12d |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( x o. x ) = ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) ) |
22 |
21 20
|
sseq12d |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( ( x o. x ) C_ x <-> ( ( `' y u. ( X \ `' `' X ) ) o. ( `' y u. ( X \ `' `' X ) ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) ) |
23 |
19 22
|
syl5ibr |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( ( y o. y ) C_ y -> ( x o. x ) C_ x ) ) |
24 |
23
|
adantl |
|- ( ( X e. V /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ( y o. y ) C_ y -> ( x o. x ) C_ x ) ) |
25 |
|
cnvco |
|- `' ( x o. x ) = ( `' x o. `' x ) |
26 |
|
cnvss |
|- ( ( x o. x ) C_ x -> `' ( x o. x ) C_ `' x ) |
27 |
25 26
|
eqsstrrid |
|- ( ( x o. x ) C_ x -> ( `' x o. `' x ) C_ `' x ) |
28 |
|
id |
|- ( y = `' x -> y = `' x ) |
29 |
28 28
|
coeq12d |
|- ( y = `' x -> ( y o. y ) = ( `' x o. `' x ) ) |
30 |
29 28
|
sseq12d |
|- ( y = `' x -> ( ( y o. y ) C_ y <-> ( `' x o. `' x ) C_ `' x ) ) |
31 |
27 30
|
syl5ibr |
|- ( y = `' x -> ( ( x o. x ) C_ x -> ( y o. y ) C_ y ) ) |
32 |
31
|
adantl |
|- ( ( X e. V /\ y = `' x ) -> ( ( x o. x ) C_ x -> ( y o. y ) C_ y ) ) |
33 |
|
id |
|- ( x = ( X u. ( dom X X. ran X ) ) -> x = ( X u. ( dom X X. ran X ) ) ) |
34 |
33 33
|
coeq12d |
|- ( x = ( X u. ( dom X X. ran X ) ) -> ( x o. x ) = ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) ) |
35 |
34 33
|
sseq12d |
|- ( x = ( X u. ( dom X X. ran X ) ) -> ( ( x o. x ) C_ x <-> ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) C_ ( X u. ( dom X X. ran X ) ) ) ) |
36 |
|
ssun1 |
|- X C_ ( X u. ( dom X X. ran X ) ) |
37 |
36
|
a1i |
|- ( X e. V -> X C_ ( X u. ( dom X X. ran X ) ) ) |
38 |
|
trclexlem |
|- ( X e. V -> ( X u. ( dom X X. ran X ) ) e. _V ) |
39 |
|
coundir |
|- ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) = ( ( X o. ( X u. ( dom X X. ran X ) ) ) u. ( ( dom X X. ran X ) o. ( X u. ( dom X X. ran X ) ) ) ) |
40 |
|
coundi |
|- ( X o. ( X u. ( dom X X. ran X ) ) ) = ( ( X o. X ) u. ( X o. ( dom X X. ran X ) ) ) |
41 |
|
cossxp |
|- ( X o. X ) C_ ( dom X X. ran X ) |
42 |
|
cossxp |
|- ( X o. ( dom X X. ran X ) ) C_ ( dom ( dom X X. ran X ) X. ran X ) |
43 |
|
dmxpss |
|- dom ( dom X X. ran X ) C_ dom X |
44 |
|
xpss1 |
|- ( dom ( dom X X. ran X ) C_ dom X -> ( dom ( dom X X. ran X ) X. ran X ) C_ ( dom X X. ran X ) ) |
45 |
43 44
|
ax-mp |
|- ( dom ( dom X X. ran X ) X. ran X ) C_ ( dom X X. ran X ) |
46 |
42 45
|
sstri |
|- ( X o. ( dom X X. ran X ) ) C_ ( dom X X. ran X ) |
47 |
41 46
|
unssi |
|- ( ( X o. X ) u. ( X o. ( dom X X. ran X ) ) ) C_ ( dom X X. ran X ) |
48 |
40 47
|
eqsstri |
|- ( X o. ( X u. ( dom X X. ran X ) ) ) C_ ( dom X X. ran X ) |
49 |
|
coundi |
|- ( ( dom X X. ran X ) o. ( X u. ( dom X X. ran X ) ) ) = ( ( ( dom X X. ran X ) o. X ) u. ( ( dom X X. ran X ) o. ( dom X X. ran X ) ) ) |
50 |
|
cossxp |
|- ( ( dom X X. ran X ) o. X ) C_ ( dom X X. ran ( dom X X. ran X ) ) |
51 |
|
rnxpss |
|- ran ( dom X X. ran X ) C_ ran X |
52 |
|
xpss2 |
|- ( ran ( dom X X. ran X ) C_ ran X -> ( dom X X. ran ( dom X X. ran X ) ) C_ ( dom X X. ran X ) ) |
53 |
51 52
|
ax-mp |
|- ( dom X X. ran ( dom X X. ran X ) ) C_ ( dom X X. ran X ) |
54 |
50 53
|
sstri |
|- ( ( dom X X. ran X ) o. X ) C_ ( dom X X. ran X ) |
55 |
|
xptrrel |
|- ( ( dom X X. ran X ) o. ( dom X X. ran X ) ) C_ ( dom X X. ran X ) |
56 |
54 55
|
unssi |
|- ( ( ( dom X X. ran X ) o. X ) u. ( ( dom X X. ran X ) o. ( dom X X. ran X ) ) ) C_ ( dom X X. ran X ) |
57 |
49 56
|
eqsstri |
|- ( ( dom X X. ran X ) o. ( X u. ( dom X X. ran X ) ) ) C_ ( dom X X. ran X ) |
58 |
48 57
|
unssi |
|- ( ( X o. ( X u. ( dom X X. ran X ) ) ) u. ( ( dom X X. ran X ) o. ( X u. ( dom X X. ran X ) ) ) ) C_ ( dom X X. ran X ) |
59 |
39 58
|
eqsstri |
|- ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) C_ ( dom X X. ran X ) |
60 |
|
ssun2 |
|- ( dom X X. ran X ) C_ ( X u. ( dom X X. ran X ) ) |
61 |
59 60
|
sstri |
|- ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) C_ ( X u. ( dom X X. ran X ) ) |
62 |
61
|
a1i |
|- ( X e. V -> ( ( X u. ( dom X X. ran X ) ) o. ( X u. ( dom X X. ran X ) ) ) C_ ( X u. ( dom X X. ran X ) ) ) |
63 |
24 32 35 37 38 62
|
clcnvlem |
|- ( X e. V -> `' |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } = |^| { y | ( `' X C_ y /\ ( y o. y ) C_ y ) } ) |