| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trclubg |
|- ( X e. V -> |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ( X u. ( dom X X. ran X ) ) ) |
| 2 |
|
dmss |
|- ( |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ( X u. ( dom X X. ran X ) ) -> dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ dom ( X u. ( dom X X. ran X ) ) ) |
| 3 |
1 2
|
syl |
|- ( X e. V -> dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ dom ( X u. ( dom X X. ran X ) ) ) |
| 4 |
|
dmun |
|- dom ( X u. ( dom X X. ran X ) ) = ( dom X u. dom ( dom X X. ran X ) ) |
| 5 |
|
dmxpss |
|- dom ( dom X X. ran X ) C_ dom X |
| 6 |
|
ssequn2 |
|- ( dom ( dom X X. ran X ) C_ dom X <-> ( dom X u. dom ( dom X X. ran X ) ) = dom X ) |
| 7 |
5 6
|
mpbi |
|- ( dom X u. dom ( dom X X. ran X ) ) = dom X |
| 8 |
4 7
|
eqtri |
|- dom ( X u. ( dom X X. ran X ) ) = dom X |
| 9 |
3 8
|
sseqtrdi |
|- ( X e. V -> dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ dom X ) |
| 10 |
|
ssmin |
|- X C_ |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } |
| 11 |
|
dmss |
|- ( X C_ |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } -> dom X C_ dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } ) |
| 12 |
10 11
|
mp1i |
|- ( X e. V -> dom X C_ dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } ) |
| 13 |
9 12
|
eqssd |
|- ( X e. V -> dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } = dom X ) |