Step |
Hyp |
Ref |
Expression |
1 |
|
trclubg |
|- ( X e. V -> |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ( X u. ( dom X X. ran X ) ) ) |
2 |
|
dmss |
|- ( |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ( X u. ( dom X X. ran X ) ) -> dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ dom ( X u. ( dom X X. ran X ) ) ) |
3 |
1 2
|
syl |
|- ( X e. V -> dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ dom ( X u. ( dom X X. ran X ) ) ) |
4 |
|
dmun |
|- dom ( X u. ( dom X X. ran X ) ) = ( dom X u. dom ( dom X X. ran X ) ) |
5 |
|
dmxpss |
|- dom ( dom X X. ran X ) C_ dom X |
6 |
|
ssequn2 |
|- ( dom ( dom X X. ran X ) C_ dom X <-> ( dom X u. dom ( dom X X. ran X ) ) = dom X ) |
7 |
5 6
|
mpbi |
|- ( dom X u. dom ( dom X X. ran X ) ) = dom X |
8 |
4 7
|
eqtri |
|- dom ( X u. ( dom X X. ran X ) ) = dom X |
9 |
3 8
|
sseqtrdi |
|- ( X e. V -> dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ dom X ) |
10 |
|
ssmin |
|- X C_ |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } |
11 |
|
dmss |
|- ( X C_ |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } -> dom X C_ dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } ) |
12 |
10 11
|
mp1i |
|- ( X e. V -> dom X C_ dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } ) |
13 |
9 12
|
eqssd |
|- ( X e. V -> dom |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } = dom X ) |