Metamath Proof Explorer


Theorem dmtrcl

Description: The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020)

Ref Expression
Assertion dmtrcl ( 𝑋𝑉 → dom { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } = dom 𝑋 )

Proof

Step Hyp Ref Expression
1 trclubg ( 𝑋𝑉 { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } ⊆ ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) )
2 dmss ( { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } ⊆ ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) → dom { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } ⊆ dom ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) )
3 1 2 syl ( 𝑋𝑉 → dom { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } ⊆ dom ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) )
4 dmun dom ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) = ( dom 𝑋 ∪ dom ( dom 𝑋 × ran 𝑋 ) )
5 dmxpss dom ( dom 𝑋 × ran 𝑋 ) ⊆ dom 𝑋
6 ssequn2 ( dom ( dom 𝑋 × ran 𝑋 ) ⊆ dom 𝑋 ↔ ( dom 𝑋 ∪ dom ( dom 𝑋 × ran 𝑋 ) ) = dom 𝑋 )
7 5 6 mpbi ( dom 𝑋 ∪ dom ( dom 𝑋 × ran 𝑋 ) ) = dom 𝑋
8 4 7 eqtri dom ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) = dom 𝑋
9 3 8 sseqtrdi ( 𝑋𝑉 → dom { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } ⊆ dom 𝑋 )
10 ssmin 𝑋 { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) }
11 dmss ( 𝑋 { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } → dom 𝑋 ⊆ dom { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } )
12 10 11 mp1i ( 𝑋𝑉 → dom 𝑋 ⊆ dom { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } )
13 9 12 eqssd ( 𝑋𝑉 → dom { 𝑥 ∣ ( 𝑋𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } = dom 𝑋 )