| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trclubg |
⊢ ( 𝑋 ∈ 𝑉 → ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ⊆ ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) ) |
| 2 |
|
dmss |
⊢ ( ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ⊆ ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) → dom ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ⊆ dom ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → dom ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ⊆ dom ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) ) |
| 4 |
|
dmun |
⊢ dom ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) = ( dom 𝑋 ∪ dom ( dom 𝑋 × ran 𝑋 ) ) |
| 5 |
|
dmxpss |
⊢ dom ( dom 𝑋 × ran 𝑋 ) ⊆ dom 𝑋 |
| 6 |
|
ssequn2 |
⊢ ( dom ( dom 𝑋 × ran 𝑋 ) ⊆ dom 𝑋 ↔ ( dom 𝑋 ∪ dom ( dom 𝑋 × ran 𝑋 ) ) = dom 𝑋 ) |
| 7 |
5 6
|
mpbi |
⊢ ( dom 𝑋 ∪ dom ( dom 𝑋 × ran 𝑋 ) ) = dom 𝑋 |
| 8 |
4 7
|
eqtri |
⊢ dom ( 𝑋 ∪ ( dom 𝑋 × ran 𝑋 ) ) = dom 𝑋 |
| 9 |
3 8
|
sseqtrdi |
⊢ ( 𝑋 ∈ 𝑉 → dom ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ⊆ dom 𝑋 ) |
| 10 |
|
ssmin |
⊢ 𝑋 ⊆ ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } |
| 11 |
|
dmss |
⊢ ( 𝑋 ⊆ ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } → dom 𝑋 ⊆ dom ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ) |
| 12 |
10 11
|
mp1i |
⊢ ( 𝑋 ∈ 𝑉 → dom 𝑋 ⊆ dom ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ) |
| 13 |
9 12
|
eqssd |
⊢ ( 𝑋 ∈ 𝑉 → dom ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } = dom 𝑋 ) |