Metamath Proof Explorer


Theorem mp1i

Description: Inference detaching an antecedent and introducing a new one. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses mp1i.1 𝜑
mp1i.2 ( 𝜑𝜓 )
Assertion mp1i ( 𝜒𝜓 )

Proof

Step Hyp Ref Expression
1 mp1i.1 𝜑
2 mp1i.2 ( 𝜑𝜓 )
3 1 2 ax-mp 𝜓
4 3 a1i ( 𝜒𝜓 )