Metamath Proof Explorer


Theorem mp1i

Description: Inference detaching an antecedent and introducing a new one. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses mp1i.1
|- ph
mp1i.2
|- ( ph -> ps )
Assertion mp1i
|- ( ch -> ps )

Proof

Step Hyp Ref Expression
1 mp1i.1
 |-  ph
2 mp1i.2
 |-  ( ph -> ps )
3 1 2 ax-mp
 |-  ps
4 3 a1i
 |-  ( ch -> ps )