Metamath Proof Explorer


Theorem dmtrcl

Description: The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020)

Ref Expression
Assertion dmtrcl X V dom x | X x x x x = dom X

Proof

Step Hyp Ref Expression
1 trclubg X V x | X x x x x X dom X × ran X
2 dmss x | X x x x x X dom X × ran X dom x | X x x x x dom X dom X × ran X
3 1 2 syl X V dom x | X x x x x dom X dom X × ran X
4 dmun dom X dom X × ran X = dom X dom dom X × ran X
5 dmxpss dom dom X × ran X dom X
6 ssequn2 dom dom X × ran X dom X dom X dom dom X × ran X = dom X
7 5 6 mpbi dom X dom dom X × ran X = dom X
8 4 7 eqtri dom X dom X × ran X = dom X
9 3 8 sseqtrdi X V dom x | X x x x x dom X
10 ssmin X x | X x x x x
11 dmss X x | X x x x x dom X dom x | X x x x x
12 10 11 mp1i X V dom X dom x | X x x x x
13 9 12 eqssd X V dom x | X x x x x = dom X