Metamath Proof Explorer


Theorem rntrcl

Description: The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020)

Ref Expression
Assertion rntrcl XVranx|Xxxxx=ranX

Proof

Step Hyp Ref Expression
1 trclubg XVx|XxxxxXdomX×ranX
2 rnss x|XxxxxXdomX×ranXranx|XxxxxranXdomX×ranX
3 1 2 syl XVranx|XxxxxranXdomX×ranX
4 rnun ranXdomX×ranX=ranXrandomX×ranX
5 rnxpss randomX×ranXranX
6 ssequn2 randomX×ranXranXranXrandomX×ranX=ranX
7 5 6 mpbi ranXrandomX×ranX=ranX
8 4 7 eqtri ranXdomX×ranX=ranX
9 3 8 sseqtrdi XVranx|XxxxxranX
10 ssmin Xx|Xxxxx
11 rnss Xx|XxxxxranXranx|Xxxxx
12 10 11 mp1i XVranXranx|Xxxxx
13 9 12 eqssd XVranx|Xxxxx=ranX